Advanced Search
Volume 46 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
CHEN Zhen, DU Xiaoyu, TANG Jie, WONG Kat-Kit. DRL-based RIS-assisted ISAC Network: Challenges and Opportunities[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3467-3473. doi: 10.11999/JEIT240086
Citation: CHEN Zhen, DU Xiaoyu, TANG Jie, WONG Kat-Kit. DRL-based RIS-assisted ISAC Network: Challenges and Opportunities[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3467-3473. doi: 10.11999/JEIT240086

DRL-based RIS-assisted ISAC Network: Challenges and Opportunities

doi: 10.11999/JEIT240086
Funds:  The National Natural Science Foundation of China (62371197), The National Natural Science Foundation of Guangdong (2022A1515011189), The Open Project of Southeast University (K202411)
  • Received Date: 2024-02-22
  • Rev Recd Date: 2024-08-13
  • Available Online: 2024-08-27
  • Publish Date: 2024-09-26
  • The Deep Reinforcement Learning (DRL) has received widespread attention, which has potential in Reconfigurable Intelligent Surface (RIS) assisted Integrated Sensing And Communication (ISAC) network. However, due to the high cost of data offloading and model training, the existing RIS-assisted ISAC frameworks still face great challenges. To overcome this problem, the paper analyzes the main technology of DRL in the field of ISAC networks and its solution, which can solve the of high complexity, high-frequency transmission and limited coverage problems. To promote the implementation of these technologies, this paper further discusses the future development trends of DRL technologies in RIS-assisted ISAC networks, including potential applications and problems to be solved.
  • loading
  • [1]
    LIU An, HUANG Zhe, LI Min, et al. A survey on fundamental limits of integrated sensing and communication[J]. IEEE Communications Surveys & Tutorials, 2022, 24(2): 994–1034. doi: 10.1109/COMST.2022.3149272.
    [2]
    CHEN Zhen, TANG Jie, HUANG Lei, et al. Robust target positioning for reconfigurable intelligent surface assisted MIMO radar systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(11): 15098–15102. doi: 10.1109/TVT.2023.3284454.
    [3]
    MEALEY R M. A method for calculating error probabilities in a radar communication system[J]. IEEE Transactions on Space Electronics and Telemetry, 1963, 9(2): 37–42. doi: 10.1109/TSET.1963.4337601.
    [4]
    ZHANG J A, RAHMAN M L, WU Kai, et al. Enabling joint communication and radar sensing in mobile networks—a survey[J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 306–345. doi: 10.1109/COMST.2021.3122519.
    [5]
    TONEX. Introduction to 6G | IMT-2030[EB/OL]. https://www.tonex.com/training-courses/introduction-to-6g-imt-2030/, 2020.
    [6]
    CHEN Zhen, HUANG Lei, XIA Shuqiang, et al. Parallel channel estimation for RIS-assisted internet of things[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(8): 9762–9773. doi: 10.1109/TITS.2024.3364248.
    [7]
    Communication Network., ZTE and China Unicom Achieve World's First 5G Mid-Band Network Verification of Reconfigurable Intelligent Surface in External Networks[EB/OL] https://www.c114.com.cn/news/127/a1167167.html, 2021.

    Communication Network.,ZTE and China Unicom Achieve World's First 5G Mid-Band Network Verification of Reconfigurable Intelligent Surface in External Networks[EB/OL] https://www.c114.com.cn/news/127/a1167167.html, 2021.
    [8]
    CHEN Zhen, TANG Jie, ZHANG Xiuyin, et al. Hybrid evolutionary-based sparse channel estimation for IRS-assisted mmWave MIMO systems[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 1586–1601. doi: 10.1109/TWC.2021.3105405.
    [9]
    HUANG Chongwen, MO Ronghong, and YUEN C. Reconfigurable intelligent surface assisted multiuser MISO systems exploiting deep reinforcement learning[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1839–1850. doi: 10.1109/JSAC.2020.3000835.
    [10]
    XU Wangyang, AN Jiancheng, XU Yongjun, et al. Time-varying channel prediction for RIS-assisted MU-MISO networks via deep learning[J]. IEEE Transactions on Cognitive Communications and Networking, 2022, 8(4): 1802–1815. doi: 10.1109/TCCN.2022.3188153.
    [11]
    YANG Helin, XIONG Zehui, ZHAO Jun, et al. Deep reinforcement learning-based intelligent reflecting surface for secure wireless communications[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 375–388. doi: 10.1109/TWC.2020.3024860.
    [12]
    XU Wangyang, GAN Lu, and HUANG Chongwen. A robust deep learning-based beamforming design for RIS-assisted multiuser MISO communications with practical constraints[J]. IEEE transactions on Cognitive Communications and Networking, 2022, 8(2): 694–706. doi: 10.1109/TCCN.2021.3128605.
    [13]
    DEMIR Ö T and BJÖRNSON E. Is channel estimation necessary to select phase-shifts for RIS-assisted massive MIMO?[J]. IEEE Transactions on Wireless Communications, 2022, 21(11): 9537–9552. doi: 10.1109/TWC.2022.3177700.
    [14]
    SAIKIA P, SINGH K, TAGHIZADEH O, et al. DRL algorithms for efficient spectrum sharing in RIS-aided MIMO radar and cellular systems[C]. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM), Rockville, USA, 2022: 55–60. doi: 10.1109/MILCOM55135.2022.10017985.
    [15]
    ZHAO Jingjing, YU Lanchenhui, CAI Kaiquan, et al. RIS-aided ground-aerial NOMA communications: A distributionally robust DRL approach[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(4): 1287–1301. doi: 10.1109/JSAC.2022.3143230.
    [16]
    PENG Zhangjie, ZHANG Zhibo, KONG Lei, et al. Deep reinforcement learning for RIS-aided multiuser full-duplex secure communications with hardware impairments[J]. IEEE Internet of Things Journal, 2022, 9(21): 21121–21135. doi: 10.1109/JIOT.2022.3177705.
    [17]
    张在琛, 江浩. 智能超表面使能无人机高能效通信信道建模与传输机理分析[J]. 电子学报, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.

    ZHANG Zaichen and JIANG Hao. Channel modeling and characteristics analysis for high energy-efficient RIS-assisted UAV communications[J]. Acta Electronica Sinica, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.
    [18]
    ZHOU Hao, EROL-KANTARCI M, LIU Yuanwei, et al. Heuristic algorithms for RIS-assisted wireless networks: Exploring heuristic-aided machine learning[J]. IEEE Wireless Communications, 2024, 31(4): 106–114. doi: 10.1109/MWC.010.2300321.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (367) PDF downloads(91) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return