Advanced Search
Volume 46 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
YU Cuilin, WANG Qingsong, ZHONG Zixuan, ZHANG Junhao, LAI Tao, HUANG Haifeng. Elevation Error Prediction Dataset Using Global Open-source Digital Elevation Model[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3445-3455. doi: 10.11999/JEIT240062
Citation: YU Cuilin, WANG Qingsong, ZHONG Zixuan, ZHANG Junhao, LAI Tao, HUANG Haifeng. Elevation Error Prediction Dataset Using Global Open-source Digital Elevation Model[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3445-3455. doi: 10.11999/JEIT240062

Elevation Error Prediction Dataset Using Global Open-source Digital Elevation Model

doi: 10.11999/JEIT240062
Funds:  The National Natural Science Foundation of China (62273365, 62071499), Xiaomi Young Talents Program
  • Received Date: 2024-01-29
  • Rev Recd Date: 2024-06-18
  • Available Online: 2024-07-01
  • Publish Date: 2024-09-26
  • The correction in Digital Elevation Models (DEMs) has always been a crucial aspect of remote sensing geoscience research. The burgeoning development of new machine learning methods in recent years has provided novel solutions for the correction of DEM elevation errors. Given the reliance of machine learning and other artificial intelligence methods on extensive training data, and considering the current lack of publicly available, unified, large-scale, and standardized multisource DEM elevation error prediction datasets for large areas, the multi-source DEM Elevation Error Prediction Dataset (DEEP-Dataset) is introduced in this paper. This dataset comprises four sub-datasets, based on the TerraSAR-X add-on for Digital Elevation Measurements (TanDEM-X) DEM and Advanced land observing satellite World 3D-30 m (AW3D30) DEM in the Guangdong Province study area of China, and the Shuttle Radar Topography Mission (SRTM) DEM and Advanced Spaceborne Thermal Emission and reflection Radiometer (ASTER) DEM in the Northern Territory study area of Australia. The Guangdong Province sample comprises approximately 40 000 instances, while the Northern Territory sample includes about 1 600 000 instances. Each sample in the dataset consists of ten features, encompassing geographic spatial information, land cover types, and topographic attributes. The effectiveness of the DEEP-Dataset in actual model training and DEM correction has been validated through a series of comparative experiments, including machine learning model testing, DEM correction, and feature importance assessment. These experiments demonstrate the dataset’s rationality, effectiveness, and comprehensiveness.
  • loading
  • [1]
    OKOLIE C J and SMIT J L. A systematic review and meta-analysis of Digital elevation model (DEM) fusion: Pre-processing, methods and applications[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 188: 1–29. doi: 10.1016/j.isprsjprs.2022.03.016.
    [2]
    ZHAO Yaqi and YE Hongxia. SqUNet: An high-performance network for crater detection with DEM data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 8577–8585. doi: 10.1109/JSTARS.2023.3314128.
    [3]
    LUEDELING E, SIEBERT S, and BUERKERT A. Filling the voids in the SRTM elevation model — A TIN-based delta surface approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(4): 283–294. doi: 10.1016/j.isprsjprs.2007.05.004.
    [4]
    FREY H and PAUL F. On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 18: 480–490. doi: 10.1016/J.JAG.2011.09.020.
    [5]
    SCHREYER J, BYRON WALKER B, and LAKES T. Implementing urban canopy height derived from a TanDEM-X-DEM: An expert survey and case study[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 187: 345–361. doi: 10.1016/J.ISPRSJPRS.2022.02.015.
    [6]
    HUANG Huabing, CHEN Peimin, XU Xiaoqing, et al. Estimating building height in China from ALOS AW3D30[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 185: 146–157. doi: 10.1016/j.isprsjprs.2022.01.022.
    [7]
    GONZALEZ J H, BACHMANN M, SCHEIBER R, et al. Definition of ICESat selection criteria for their use as height references for TanDEM-X[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(6): 2750–2757. doi: 10.1109/TGRS.2010.2041355.
    [8]
    刘燕, 林赟, 谭维贤, 等. 基于圆迹干涉SAR的DEM提取[J]. 电子与信息学报, 2015, 37(6): 1463–1469. doi: 10.11999/JEIT141022.

    LIU Yan, LIN Yun, TAN Weixian, et al. DEM extraction based on interferometric circular SAR[J]. Journal of Electronics & Information Technology, 2015, 37(6): 1463–1469. doi: 10.11999/JEIT141022.
    [9]
    HUESO GONZALEZ J, BACHMANN M, KRIEGER G, et al. Development of the TanDEM-X calibration concept: Analysis of systematic errors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 716–726. doi: 10.1109/TGRS.2009.2034980.
    [10]
    LI Binbin, XIE Huan, TONG Xiaohua, et al. A global-scale DEM elevation correction model using ICESat-2 laser altimetry data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1–15. doi: 10.1109/TGRS.2023.3321956.
    [11]
    BAGHERI H, SCHMITT M, and ZHU Xiaoxiang. Fusion of TanDEM-X and cartosat-1 elevation data supported by neural network-predicted weight maps[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144: 285–297. doi: 10.1016/j.isprsjprs.2018.07.007.
    [12]
    TIAN Yu, LEI Shaogang, BIAN Zhengfu, et al. Improving the accuracy of open source digital elevation models with multi-scale fusion and a slope position-based linear regression method[J]. Remote Sensing, 2018, 10(12): 1861. doi: 10.3390/rs10121861.
    [13]
    POURSHAMSI M, XIA Junshi, YOKOYA N, et al. Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 172: 79–94. doi: 10.1016/j.isprsjprs.2020.11.008.
    [14]
    MA Xiaojie, JI Kefeng, ZHANG Linbin, et al. SAR target open-set recognition based on joint training of class-specific sub-dictionary learning[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 1–5. doi: 10.1109/LGRS.2023.3342904.
    [15]
    HU Peng, ZHEN Liangli, PENG Xi, et al. Deep supervised multi-view learning with graph priors[J]. IEEE Transactions on Image Processing, 2024, 33: 123–133. doi: 10.1109/TIP.2023.3335825.
    [16]
    CHEN Yucong. Analysis and forecasting of California housing[J]. Highlights in Business, Economics and Management, 2023, 3: 128–135. doi: 10.54097/hbem.v3i.4704.
    [17]
    BALTRUŠAITIS T, AHUJA C, and MORENCY L P. Multimodal machine learning: A survey and taxonomy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(2): 423–443. doi: 10.1109/TPAMI.2018.2798607.
    [18]
    USGS. https://earthexplorer.usgs.gov/, 2014.
    [19]
    GSCloud. Geospatial data cloud[EB/OL]. https://www.gscloud.cn/search, 2009.
    [20]
    EOC. Eoc geoservice[EB/OL]. https://download.geoservice.dlr.de/TDM90/, 2016.
    [21]
    ALOS. Aw3d30 dsm data map[EB/OL]. https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm, 2021.
    [22]
    NASA. Icesat-2 (ice, cloud, and land elevation satellite2)[EB/OL]. https://icesat-2.gsfc.nasa.gov/science/specs, 2018.
    [23]
    王密, 韦钰, 杨博, 等. ICESat-2/ATLAS全球高程控制点提取与分析[J]. 武汉大学学报(信息科学版), 2021, 46(2): 184–192. doi: 10.13203/j.whugis20200531.

    WANG Mi, WEI Yu, YANG Bo, et al. Extraction and analysis of global elevation control points from ICESat-2 /ATLAS data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 184–192. doi: 10.13203/j.whugis20200531.
    [24]
    ESA. Esa worldcover 10m 2020[EB/OL]. https://esa-worldcover.org/en, 2020.
    [25]
    National Earth System Science Data Center. Global 30-meter fine surface coverage products[EB/OL]. https://doi.org/10.12041/geodata.4200772.ver1.db, 2015.
    [26]
    ZHU Simin, GUENDEL R G, YAROVOY A, et al. Continuous human activity recognition with distributed radar sensor networks and CNN-RNN architectures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5115215. doi: 10.1109/TGRS.2022.3189746.
    [27]
    QUADRIANTO N and GHAHRAMANI Z. A very simple safe-Bayesian random forest[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(6): 1297–1303. doi: 10.1109/TPAMI.2014.2362751.
    [28]
    GEURTS P, ERNST D, and WEHENKEL L. Extremely randomized trees[J]. Machine Learning, 2006, 63(1): 3–42. doi: 10.1007/s10994-006-6226-1.
    [29]
    FUMERA G, ROLI F, and SERRAU A. A theoretical analysis of bagging as a linear combination of classifiers[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(7): 1293–1299. doi: 10.1109/TPAMI.2008.30.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(6)

    Article Metrics

    Article views (321) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return