Citation: | YU Cuilin, WANG Qingsong, ZHONG Zixuan, ZHANG Junhao, LAI Tao, HUANG Haifeng. Elevation Error Prediction Dataset Using Global Open-source Digital Elevation Model[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3445-3455. doi: 10.11999/JEIT240062 |
[1] |
OKOLIE C J and SMIT J L. A systematic review and meta-analysis of Digital elevation model (DEM) fusion: Pre-processing, methods and applications[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 188: 1–29. doi: 10.1016/j.isprsjprs.2022.03.016.
|
[2] |
ZHAO Yaqi and YE Hongxia. SqUNet: An high-performance network for crater detection with DEM data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 8577–8585. doi: 10.1109/JSTARS.2023.3314128.
|
[3] |
LUEDELING E, SIEBERT S, and BUERKERT A. Filling the voids in the SRTM elevation model — A TIN-based delta surface approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(4): 283–294. doi: 10.1016/j.isprsjprs.2007.05.004.
|
[4] |
FREY H and PAUL F. On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 18: 480–490. doi: 10.1016/J.JAG.2011.09.020.
|
[5] |
SCHREYER J, BYRON WALKER B, and LAKES T. Implementing urban canopy height derived from a TanDEM-X-DEM: An expert survey and case study[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 187: 345–361. doi: 10.1016/J.ISPRSJPRS.2022.02.015.
|
[6] |
HUANG Huabing, CHEN Peimin, XU Xiaoqing, et al. Estimating building height in China from ALOS AW3D30[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 185: 146–157. doi: 10.1016/j.isprsjprs.2022.01.022.
|
[7] |
GONZALEZ J H, BACHMANN M, SCHEIBER R, et al. Definition of ICESat selection criteria for their use as height references for TanDEM-X[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(6): 2750–2757. doi: 10.1109/TGRS.2010.2041355.
|
[8] |
刘燕, 林赟, 谭维贤, 等. 基于圆迹干涉SAR的DEM提取[J]. 电子与信息学报, 2015, 37(6): 1463–1469. doi: 10.11999/JEIT141022.
LIU Yan, LIN Yun, TAN Weixian, et al. DEM extraction based on interferometric circular SAR[J]. Journal of Electronics & Information Technology, 2015, 37(6): 1463–1469. doi: 10.11999/JEIT141022.
|
[9] |
HUESO GONZALEZ J, BACHMANN M, KRIEGER G, et al. Development of the TanDEM-X calibration concept: Analysis of systematic errors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 716–726. doi: 10.1109/TGRS.2009.2034980.
|
[10] |
LI Binbin, XIE Huan, TONG Xiaohua, et al. A global-scale DEM elevation correction model using ICESat-2 laser altimetry data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1–15. doi: 10.1109/TGRS.2023.3321956.
|
[11] |
BAGHERI H, SCHMITT M, and ZHU Xiaoxiang. Fusion of TanDEM-X and cartosat-1 elevation data supported by neural network-predicted weight maps[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144: 285–297. doi: 10.1016/j.isprsjprs.2018.07.007.
|
[12] |
TIAN Yu, LEI Shaogang, BIAN Zhengfu, et al. Improving the accuracy of open source digital elevation models with multi-scale fusion and a slope position-based linear regression method[J]. Remote Sensing, 2018, 10(12): 1861. doi: 10.3390/rs10121861.
|
[13] |
POURSHAMSI M, XIA Junshi, YOKOYA N, et al. Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 172: 79–94. doi: 10.1016/j.isprsjprs.2020.11.008.
|
[14] |
MA Xiaojie, JI Kefeng, ZHANG Linbin, et al. SAR target open-set recognition based on joint training of class-specific sub-dictionary learning[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 1–5. doi: 10.1109/LGRS.2023.3342904.
|
[15] |
HU Peng, ZHEN Liangli, PENG Xi, et al. Deep supervised multi-view learning with graph priors[J]. IEEE Transactions on Image Processing, 2024, 33: 123–133. doi: 10.1109/TIP.2023.3335825.
|
[16] |
CHEN Yucong. Analysis and forecasting of California housing[J]. Highlights in Business, Economics and Management, 2023, 3: 128–135. doi: 10.54097/hbem.v3i.4704.
|
[17] |
BALTRUŠAITIS T, AHUJA C, and MORENCY L P. Multimodal machine learning: A survey and taxonomy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(2): 423–443. doi: 10.1109/TPAMI.2018.2798607.
|
[18] |
USGS. https://earthexplorer.usgs.gov/, 2014.
|
[19] |
GSCloud. Geospatial data cloud[EB/OL]. https://www.gscloud.cn/search, 2009.
|
[20] |
EOC. Eoc geoservice[EB/OL]. https://download.geoservice.dlr.de/TDM90/, 2016.
|
[21] |
ALOS. Aw3d30 dsm data map[EB/OL]. https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm, 2021.
|
[22] |
NASA. Icesat-2 (ice, cloud, and land elevation satellite2)[EB/OL]. https://icesat-2.gsfc.nasa.gov/science/specs, 2018.
|
[23] |
王密, 韦钰, 杨博, 等. ICESat-2/ATLAS全球高程控制点提取与分析[J]. 武汉大学学报(信息科学版), 2021, 46(2): 184–192. doi: 10.13203/j.whugis20200531.
WANG Mi, WEI Yu, YANG Bo, et al. Extraction and analysis of global elevation control points from ICESat-2 /ATLAS data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 184–192. doi: 10.13203/j.whugis20200531.
|
[24] |
ESA. Esa worldcover 10m 2020[EB/OL]. https://esa-worldcover.org/en, 2020.
|
[25] |
National Earth System Science Data Center. Global 30-meter fine surface coverage products[EB/OL]. https://doi.org/10.12041/geodata.4200772.ver1.db, 2015.
|
[26] |
ZHU Simin, GUENDEL R G, YAROVOY A, et al. Continuous human activity recognition with distributed radar sensor networks and CNN-RNN architectures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5115215. doi: 10.1109/TGRS.2022.3189746.
|
[27] |
QUADRIANTO N and GHAHRAMANI Z. A very simple safe-Bayesian random forest[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(6): 1297–1303. doi: 10.1109/TPAMI.2014.2362751.
|
[28] |
GEURTS P, ERNST D, and WEHENKEL L. Extremely randomized trees[J]. Machine Learning, 2006, 63(1): 3–42. doi: 10.1007/s10994-006-6226-1.
|
[29] |
FUMERA G, ROLI F, and SERRAU A. A theoretical analysis of bagging as a linear combination of classifiers[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(7): 1293–1299. doi: 10.1109/TPAMI.2008.30.
|