Citation: | YANG Zhi, XU Hang, SANG Weiquan, SUN Haodong, JIN Shuyuan. Position-Adaptive Mutation Scheduling Strategy in Fuzzing[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3797-3806. doi: 10.11999/JEIT240060 |
[1] |
ZALEWSKI M. American Fuzzy Lop (AFL) fuzzer[EB/OL]. https://lcamtuf.coredump.cx/afl/, 2023.
|
[2] |
Honggfuzz: A security oriented, feedback-driven, evolutionary, easy-to-use fuzzer[EB/OL]. https://github.com/google/honggfuzz, 2023.
|
[3] |
LLWM. LibFuzzer—A library for coverage-guided fuzz testing[EB/OL]. http://llvm.org/docs/LibFuzzer.html, 2023.
|
[4] |
LEE M, CHA S, and OH H. Learning seed-adaptive mutation strategies for greybox fuzzing[C]. 2023 IEEE/ACM 45th International Conference on Software Engineering, Melbourne, Australia, 2023: 384–396. doi: 10.1109/ICSE48619.2023.00043.
|
[5] |
AGRAWAL S and GOYAL N. Analysis of thompson sampling for the multi-armed bandit problem[C]. The 25th Annual Conference on Learning Theory, Edinburgh, UK, 2012: 39.
|
[6] |
AUER P, CESA-BIANCHI N, and FISCHER P. Finite-time analysis of the Multiarmed bandit problem[J]. Machine Learning, 2002, 47(2/3): 235–256. doi: 10.1023/A:1013689704352.
|
[7] |
JAUERNIG P, JAKOBOVIC D, PICEK S, et al. DARWIN: Survival of the fittest fuzzing mutators[C]. The 30th Annual Network and Distributed System Security Symposium, San Diego, USA, 2023. doi: 10.14722/ndss.2023.23159.
|
[8] |
LEMIEUX C and SEN K. FairFuzz: A targeted mutation strategy for increasing greybox fuzz testing coverage[C]. The 33rd IEEE/ACM International Conference on Automated Software Engineering, Montpellier, France, 2018: 475–485. doi: 10.1145/3238147.3238176.
|
[9] |
SHE Dongdong, SHAH A, and JANA S. Effective seed scheduling for fuzzing with graph centrality analysis[C]. The 43rd IEEE Symposium on Security and Privacy, San Francisco, USA, 2022: 2194–2211. doi: 10.1109/SP46214.2022.9833761.
|
[10] |
SAHA S, SARKER L, SHAFIUZZAMAN M, et al. Rare path guided fuzzing[C]. The 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis, Seattle, USA, 2023: 1295–1306. doi: 10.1145/3597926.3598136.
|
[11] |
LÜ Chenyang, JI Shouling, ZHANG Chao, et al. MOPT: Optimized mutation scheduling for fuzzers[C]. The 28th USENIX Security Symposium, Santa Clara, USA, 2019: 1949–1966.
|
[12] |
WU Mingyuan, JIANG Ling, XIANG Jiahong, et al. One fuzzing strategy to rule them all[C]. The 44th International Conference on Software Engineering, Pittsburgh, USA, 2022: 1634–1645. doi: 10.1145/3510003.3510174.
|
[13] |
SUTTON R S and BARTO A G. Reinforcement Learning: An Introduction[M]. 2nd ed. Cambridge: The MIT Press, 2018: 31–47.
|
[14] |
李明磊, 陆余良, 黄晖, 等. 模糊测试变异算子调度优化模型[J]. 小型微型计算机系统, 2021, 42(10): 2190–2195. doi: 10.3969/j.issn.1000-1220.2021.10.029.
LI Minglei, LU Yuliang, HUANG Hui, et al. Fuzzy tester mutation operator scheduling optimization algorithm[J]. Journal of Chinese Computer Systems, 2021, 42(10): 2190–2195. doi: 10.3969/j.issn.1000-1220.2021.10.029.
|
[15] |
FIORALDI A, MAIER D C, EIßFELDT H, et al. AFL++: Combining incremental steps of fuzzing research[C]. The 14th USENIX Conference on Offensive Technologies, Berkeley, USA, 2020: 10.
|
[16] |
HAZIMEH A, HERRERA A, and PAYER M. Magma: A ground-truth fuzzing benchmark[J]. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2020, 4(3): 49. doi: 10.1145/3428334.
|
[17] |
DOLAN-GAVITT B, HULIN P, KIRDA E, et al. LAVA: Large-scale automated vulnerability addition[C]. 2016 IEEE Symposium on Security and Privacy, San Jose, USA, 2016: 110–121. doi: 10.1109/SP.2016.15.
|