Advanced Search
Turn off MathJax
Article Contents
LUO Jiang, ZHANG Wenzhu, CHENG Qiang. 95~105 GHz SiGe BiCMOS Wideband Digitally Controlled Attenuator for Metasurface Antenna Design[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240059
Citation: LUO Jiang, ZHANG Wenzhu, CHENG Qiang. 95~105 GHz SiGe BiCMOS Wideband Digitally Controlled Attenuator for Metasurface Antenna Design[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240059

95~105 GHz SiGe BiCMOS Wideband Digitally Controlled Attenuator for Metasurface Antenna Design

doi: 10.11999/JEIT240059
Funds:  The National Key Research and Development Program of China (2023YFB3811503), The Zhejiang Provincial Natural Science Foundation of China (LQ23F040009), The State Key Laboratory of Millimeter Waves (K202316)
  • Received Date: 2024-01-26
  • Rev Recd Date: 2024-09-05
  • Available Online: 2024-09-10
  • Recently, metasurface antenna technology has raised meticulous attention from scholars in the communications, radar, and antenna communities, owing to its great capability in flexible control of electromagnetic waves. In particular, the active tunable device used in the metasurface antenna element is one of the most significant components that affect the performance of the entire system. In this paper, a 95 to 105 GHz digitally controlled attenuator with 5-bit resolution is designed in a 0.13 μm SiGe BiCMOS process. The attenuator employs two different topological structures, reflective and simplified T-type. The 4 dB and 8 dB reflective attenuation units utilize cross-coupled broadband couplers instead of traditional 3 dB couplers or directional couplers, achieving high attenuation precision and low insertion loss. On the other hand, the 0.5 dB, 1 dB, and 2 dB attenuation units adopt a simplified T-type structure. Furthermore, the utilization of RC positive and negative slope correction networks applied separately to different attenuation units enables phase compensation, significantly improving the additional phase shift of the attenuator. Within the desired frequency range of 95~105 GHz, the attenuator achieves an attenuation range of 0~15.5 dB with a step of 0.5 dB in a compact size of 0.12 mm2. It exhibits a simulated insertion loss below 2.5 dB, a simulated amplitude Root Mean Square (RMS) error less than 0.25 dB, and a simulated phase RMS error is better than 2.2°. The proposed W-band attenuator can serve as a key component empowering the hardware implementation of an integrated Transmit/Receive (T/R) metasurface antenna system with simultaneous radiation and scattering control.
  • loading
  • [1]
    CUI Tiejun, LIU Shuo, and ZHANG Lei. Information metamaterials and metasurfaces[J]. Journal of Materials Chemistry C, 2017, 5(15): 3644–3668. doi: 10.1039/C7TC00548B.
    [2]
    CHENG Qiang, ZHANG Lei, DAI Junyan, et al. Reconfigurable intelligent surfaces: Simplified-architecture transmitters—from theory to implementations[J]. Proceedings of the IEEE, 2022, 110(9): 1266–1289. doi: 10.1109/JPROC.2022.3170498.
    [3]
    ZHAO Chenxi, GUO Jiawei, LIU Huihua, et al. A 33–41-GHz SiGe-BiCMOS digital step attenuator with minimized unit impedance variation[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29(3): 568–579. doi: 10.1109/TVLSI.2020.3046016.
    [4]
    CHEON C D, RAO S G, LIM W, et al. Design methodology for a wideband, low insertion loss, digital step attenuator in SiGe BiCMOS technology[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(3): 744–748. doi: 10.1109/TCSII.2021.3111177.
    [5]
    RAO S G, CHEON C D, and CRESSLER J D. A millimeter-wave, transformer-based, SiGe distributed attenuator[J]. IEEE Microwave and Wireless Components Letters, 2022, 32(2): 145–148. doi: 10.1109/LMWC.2021.3118291.
    [6]
    KIM K, LEE H S, and MIN B W. V-W band CMOS distributed step attenuator with low phase imbalance[J]. IEEE Microwave and Wireless Components Letters, 2014, 24(8): 548–550. doi: 10.1109/LMWC.2014.2322442.
    [7]
    BAE J and NGUYEN C. A novel concurrent 22–29/57–64-GHz dual-band CMOS step attenuator with low phase variations[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(6): 1867–1875. doi: 10.1109/TMTT.2016.2546256.
    [8]
    HE Yang, ZHANG Tiedi, TANG Yichen, et al. Wideband pHEMT digital attenuator with positive voltage control driver[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(2): 295–298. doi: 10.1109/LMWC.2022.3215495.
    [9]
    JEONG J C, UHM M, JANG D P, et al. A Ka-band GaAs multi-function chip with wide-band 6-bit phase shifters and attenuators for satellite applications[C]. 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 2019: 1–4.
    [10]
    ZHANG Qingfeng, ZHAO Chenxi, ZHANG Shuangmin, et al. Mechanism analysis and design of a switched T-type attenuator with capacitive phase compensation technique[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(10): 1438–1441. doi: 10.1109/LMWT.2023.3303181.
    [11]
    LI Nayu, ZHANG Zijiang, LI Min, et al. A DC–28-GHz 7-bit high-accuracy digital-step attenuator in 55-nm CMOS[J]. IEEE Microwave and Wireless Components Letters, 2022, 32(2): 157–160. doi: 10.1109/LMWC.2021.3120934.
    [12]
    YUAN Ye, MU Shanxiang, and GUO Yongxin. 6-bit step attenuators for phased-array system with temperature compensation technique[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(8): 690–692. doi: 10.1109/LMWC.2018.2849224.
    [13]
    BAE J, LEE J, and NGUYEN C. A 10–67-GHz CMOS dual-function switching attenuator with improved flatness and large attenuation range[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(12): 4118–4129. doi: 10.1109/TMTT.2013.2288694.
    [14]
    KU B H and HONG S. 6-bit CMOS digital attenuators with low phase variations for X-band phased-array systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(7): 1651–1663. doi: 10.1109/TMTT.2010.2049691.
    [15]
    BULJA S and RULIKOWSKI P. High dynamic range reflection-type attenuator[C]. 2018 IEEE Radio and Antenna Days of the Indian Ocean (RADIO), Wolmar, Mauritius, 2018: 1–2. doi: 10.23919/RADIO.2018.8572448.
    [16]
    YISHAY R B and ELAD D. W-band SiGe attenuators based on compact low-VSWR topologies[C]. 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, USA, 2017: 638–641. doi: 10.1109/MWSYM.2017.8058650.
    [17]
    PU Yuqian, SHEN Hongchang, TANG Feihong, et al. Design of millimeter-wave reflective attenuators with capacitive compensation technique[J]. Journal of Southeast University (English Edition), 2023, 39(2): 153–160. doi: 10.3969/j.issn.1003-7985.2023.02.006.
    [18]
    BULJA S and GREBENNIKOV A. Variable reflection-type attenuators based on varactor diodes[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(12): 3719–3727. doi: 10.1109/TMTT.2012.2216895.
    [19]
    赵丽. 新一代宽带无线互联网射频收发机及关键芯片的研究与设计[D]. [博士论文], 东南大学, 2018.

    ZHAO Li. Investigations on RF transceivers and related integrated circuits for a new generation broadband wireless internet[D]. [Ph. D. dissertation], Southeast University, 2018. (in Chinese).
    [20]
    LUO Jiang, HE Jin, CHEN Pengwei, et al. Micro-strip line 90° phase shifter with double ground slots for D-band applications[J]. Journal of Circuits, Systems and Computers, 2018, 27(12): 1850192. doi: 10.1142/S021812661850192X.
    [21]
    ZHU Wei, WANG Jiawen, WANG Ruitao, et al. 14.5 A 1V W-band bidirectional transceiver front-end with <1dB T/R switch loss, <1°/dB phase/gain resolution and 12.3% TX PAE at 15.1dBm output power in 65nm CMOS technology[C]. 2021 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, 2021: 226–228. doi: 10.1109/ISSCC42613.2021.9365944.
    [22]
    ZHU Nengxu and MENG Fanyi. A 190-to-220GHz 4-bit passive attenuator with 1.4dB insertion loss and sub-0.4dB RMS amplitude error using magnetically switchable coupled-lines in 0.13-µm CMOS technology[C]. 2022 IEEE/MTT-S International Microwave Symposium - IMS 2022, Denver, USA, 2022: 746–749. doi: 10.1109/IMS37962.2022.9865616.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views (132) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return