Citation: | LUO Jiang, ZHANG Wenzhu, CHENG Qiang. 95~105 GHz SiGe BiCMOS Wideband Digitally Controlled Attenuator for Metasurface Antenna Design[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240059 |
[1] |
CUI Tiejun, LIU Shuo, and ZHANG Lei. Information metamaterials and metasurfaces[J]. Journal of Materials Chemistry C, 2017, 5(15): 3644–3668. doi: 10.1039/C7TC00548B.
|
[2] |
CHENG Qiang, ZHANG Lei, DAI Junyan, et al. Reconfigurable intelligent surfaces: Simplified-architecture transmitters—from theory to implementations[J]. Proceedings of the IEEE, 2022, 110(9): 1266–1289. doi: 10.1109/JPROC.2022.3170498.
|
[3] |
ZHAO Chenxi, GUO Jiawei, LIU Huihua, et al. A 33–41-GHz SiGe-BiCMOS digital step attenuator with minimized unit impedance variation[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29(3): 568–579. doi: 10.1109/TVLSI.2020.3046016.
|
[4] |
CHEON C D, RAO S G, LIM W, et al. Design methodology for a wideband, low insertion loss, digital step attenuator in SiGe BiCMOS technology[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(3): 744–748. doi: 10.1109/TCSII.2021.3111177.
|
[5] |
RAO S G, CHEON C D, and CRESSLER J D. A millimeter-wave, transformer-based, SiGe distributed attenuator[J]. IEEE Microwave and Wireless Components Letters, 2022, 32(2): 145–148. doi: 10.1109/LMWC.2021.3118291.
|
[6] |
KIM K, LEE H S, and MIN B W. V-W band CMOS distributed step attenuator with low phase imbalance[J]. IEEE Microwave and Wireless Components Letters, 2014, 24(8): 548–550. doi: 10.1109/LMWC.2014.2322442.
|
[7] |
BAE J and NGUYEN C. A novel concurrent 22–29/57–64-GHz dual-band CMOS step attenuator with low phase variations[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(6): 1867–1875. doi: 10.1109/TMTT.2016.2546256.
|
[8] |
HE Yang, ZHANG Tiedi, TANG Yichen, et al. Wideband pHEMT digital attenuator with positive voltage control driver[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(2): 295–298. doi: 10.1109/LMWC.2022.3215495.
|
[9] |
JEONG J C, UHM M, JANG D P, et al. A Ka-band GaAs multi-function chip with wide-band 6-bit phase shifters and attenuators for satellite applications[C]. 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 2019: 1–4.
|
[10] |
ZHANG Qingfeng, ZHAO Chenxi, ZHANG Shuangmin, et al. Mechanism analysis and design of a switched T-type attenuator with capacitive phase compensation technique[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(10): 1438–1441. doi: 10.1109/LMWT.2023.3303181.
|
[11] |
LI Nayu, ZHANG Zijiang, LI Min, et al. A DC–28-GHz 7-bit high-accuracy digital-step attenuator in 55-nm CMOS[J]. IEEE Microwave and Wireless Components Letters, 2022, 32(2): 157–160. doi: 10.1109/LMWC.2021.3120934.
|
[12] |
YUAN Ye, MU Shanxiang, and GUO Yongxin. 6-bit step attenuators for phased-array system with temperature compensation technique[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(8): 690–692. doi: 10.1109/LMWC.2018.2849224.
|
[13] |
BAE J, LEE J, and NGUYEN C. A 10–67-GHz CMOS dual-function switching attenuator with improved flatness and large attenuation range[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(12): 4118–4129. doi: 10.1109/TMTT.2013.2288694.
|
[14] |
KU B H and HONG S. 6-bit CMOS digital attenuators with low phase variations for X-band phased-array systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(7): 1651–1663. doi: 10.1109/TMTT.2010.2049691.
|
[15] |
BULJA S and RULIKOWSKI P. High dynamic range reflection-type attenuator[C]. 2018 IEEE Radio and Antenna Days of the Indian Ocean (RADIO), Wolmar, Mauritius, 2018: 1–2. doi: 10.23919/RADIO.2018.8572448.
|
[16] |
YISHAY R B and ELAD D. W-band SiGe attenuators based on compact low-VSWR topologies[C]. 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, USA, 2017: 638–641. doi: 10.1109/MWSYM.2017.8058650.
|
[17] |
PU Yuqian, SHEN Hongchang, TANG Feihong, et al. Design of millimeter-wave reflective attenuators with capacitive compensation technique[J]. Journal of Southeast University (English Edition), 2023, 39(2): 153–160. doi: 10.3969/j.issn.1003-7985.2023.02.006.
|
[18] |
BULJA S and GREBENNIKOV A. Variable reflection-type attenuators based on varactor diodes[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(12): 3719–3727. doi: 10.1109/TMTT.2012.2216895.
|
[19] |
赵丽. 新一代宽带无线互联网射频收发机及关键芯片的研究与设计[D]. [博士论文], 东南大学, 2018.
ZHAO Li. Investigations on RF transceivers and related integrated circuits for a new generation broadband wireless internet[D]. [Ph. D. dissertation], Southeast University, 2018. (in Chinese).
|
[20] |
LUO Jiang, HE Jin, CHEN Pengwei, et al. Micro-strip line 90° phase shifter with double ground slots for D-band applications[J]. Journal of Circuits, Systems and Computers, 2018, 27(12): 1850192. doi: 10.1142/S021812661850192X.
|
[21] |
ZHU Wei, WANG Jiawen, WANG Ruitao, et al. 14.5 A 1V W-band bidirectional transceiver front-end with <1dB T/R switch loss, <1°/dB phase/gain resolution and 12.3% TX PAE at 15.1dBm output power in 65nm CMOS technology[C]. 2021 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, 2021: 226–228. doi: 10.1109/ISSCC42613.2021.9365944.
|
[22] |
ZHU Nengxu and MENG Fanyi. A 190-to-220GHz 4-bit passive attenuator with 1.4dB insertion loss and sub-0.4dB RMS amplitude error using magnetically switchable coupled-lines in 0.13-µm CMOS technology[C]. 2022 IEEE/MTT-S International Microwave Symposium - IMS 2022, Denver, USA, 2022: 746–749. doi: 10.1109/IMS37962.2022.9865616.
|