Advanced Search
Turn off MathJax
Article Contents
WANG Xiaoming, LI Jiaqi, LIU Ting, JIANG Rui, XU Youyun. Large-Scale STAR-RIS Assisted Near-Field ISAC Transmission Method[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240018
Citation: WANG Xiaoming, LI Jiaqi, LIU Ting, JIANG Rui, XU Youyun. Large-Scale STAR-RIS Assisted Near-Field ISAC Transmission Method[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240018

Large-Scale STAR-RIS Assisted Near-Field ISAC Transmission Method

doi: 10.11999/JEIT240018
Funds:  The National Natural Science Foundation of China (62101274, 62371246)
  • Received Date: 2024-01-16
  • Rev Recd Date: 2024-09-06
  • Available Online: 2024-09-28
  • Simultaneous Transmitting and Reflecting Reconfigurable Intelligent Surfaces (STAR-RIS) is able to create an all-space intelligent radio environment to effectively improve the performance of wireless communication systems, thus it has vast research potential. Therefore, in this paper, a large-scale STAR-RIS-assisted near-field Integrated Sensing and Communication (ISAC) approach is proposed. Cramér-Rao Bound (CRB) of the three-dimensional estimation of the sensing target is optimized. First, the near-field system model is built and then beam steering vectors between base station, STAR-RIS, communication users, sensing target and sensor are derived respectively. Second, the sensing performance is optimized by designing the transmit beamforming matrix, the covariance matrix of transmit signal and the STAR-RIS coefficients. Third, a non-convex optimization problem is solved via semi-definite relaxation approach. The simulation results show the effectiveness of our proposed ISAC approach, and the positioning performance advantage brought by the extra distance freedom of near field.
  • loading
  • [1]
    WEI Zhiqing, QU Hanyang, WANG Yuan, et al. Integrated sensing and communication signals toward 5G-A and 6G: A survey[J]. IEEE Internet of Things Journal, 2023, 10(13): 11068–11092. doi: 10.1109/JIOT.2023.3235618.
    [2]
    BASHARAT S, HASSAN S A, PERVAIZ H, et al. Reconfigurable intelligent surfaces: Potentials, applications, and challenges for 6G wireless networks[J]. IEEE Wireless Communications, 2021, 28(6): 184–191. doi: 10.1109/MWC.011.2100016.
    [3]
    LIU Yuanwei, MU Xidong, LIU Xiao, et al. Reconfigurable intelligent surface-aided multi-user networks: Interplay between NOMA and RIS[J]. IEEE Wireless Communications, 2022, 29(2): 169–176. doi: 10.1109/MWC.102.2100363.
    [4]
    张在琛, 江浩. 智能超表面使能无人机高能效通信信道建模与传输机理分析[J]. 电子学报, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.

    ZHANG Zaichen and JIANG Hao. Channel modeling and characteristics analysis for high energy-efficient RIS-assisted UAV communications[J]. Acta Electronica Sinica, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.
    [5]
    JIANG Hao, XIONG Baiping, ZHANG Hongming, et al. Physics-based 3D end-to-end modeling for double-RIS assisted non-stationary UAV-to-ground communication channels[J]. IEEE Transactions on Communications, 2023, 71(7): 4247–4261. doi: 10.1109/TCOMM.2023.3266832.
    [6]
    GUO Yuan, LIU Yang, WU Qingqing, et al. Joint beamforming for RIS aided full-duplex integrated sensing and uplink communication[C]. Proceedings of the IEEE International Conference on Communications, Rome, Italy, 2023: 4249–4254. doi: 10.1109/ICC45041.2023.10279303.
    [7]
    XU Jiaqi, LIU Yuanwei, MU Xidong, et al. STAR-RISs: Simultaneous transmitting and reflecting reconfigurable intelligent surfaces[J]. IEEE Communications Letters, 2021, 25(9): 3134–3138. doi: 10.1109/LCOMM.2021.3082214.
    [8]
    WANG Zhaolin, MU Xidong, XU Jiaqi, et al. Simultaneously transmitting and reflecting surface (STARS) for terahertz communications[J]. IEEE Journal of Selected Topics in Signal Processing, 2023, 17(4): 861–877. doi: 10.1109/JSTSP.2023.3279621.
    [9]
    CHEN Jiagao and YU Xiangbin. Ergodic rate analysis and phase design of STAR-RIS aided NOMA with statistical CSI[J]. IEEE Communications Letters, 2022, 26(12): 2889–2893. doi: 10.1109/LCOMM.2022.3202346.
    [10]
    WANG Yufei, YANG Zheng, CUI Jingjing, et al. Optimizing the fairness of STAR-RIS and NOMA assisted integrated sensing and communication systems[J]. IEEE Transactions on Wireless Communications, 2024, 23(6): 5895–5907. doi: 10.1109/TWC.2023.3328872.
    [11]
    LIU Zhenrong, LI Zongze, WEN Miaowen, et al. STAR-RIS-aided mobile edge computing: Computation rate maximization with binary amplitude coefficients[J]. IEEE Transactions on Communications, 2023, 71(7): 4313–4327. doi: 10.1109/TCOMM.2023.3274137.
    [12]
    LI Haochen, WANG Zhaolin, MU Xidong, et al. Near-field integrated sensing, positioning, and communication: A downlink and uplink framework[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(9): 2196–2212. doi: 10.1109/JSAC.2024.3413956.
    [13]
    JIANG Hao, XIONG Baiping, ZHANG Hongming, et al. Hybrid far-and near-field modeling for reconfigurable intelligent surface assisted V2V channels: A sub-array partition based approach[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 8290–8303. doi: 10.1109/TWC.2023.3262063.
    [14]
    TANG Wankai, CHEN Mingzheng, CHEN Xiangyu, et al. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 421–439. doi: 10.1109/TWC.2020.3024887.
    [15]
    WEI Xiuhong, DAI Linglong, ZHAO Yajun, et al. Codebook design and beam training for extremely large-scale RIS: Far-field or near-field?[J]. China Communications, 2022, 19(6): 193–204. doi: 10.23919/JCC.2022.06.015.
    [16]
    SENGIJPTA S K. Fundamentals of statistical signal processing: Estimation theory[J]. Technometrics, 1995, 37(4): 465–466. doi: 10.1080/00401706.1995.10484391.
    [17]
    SHI Qingjiang and HONG Mingyi. Penalty dual decomposition method for nonsmooth nonconvex optimization—Part I: Algorithms and convergence analysis[J]. IEEE Transactions on Signal Processing, 2020, 68: 4108–4122. doi: 10.1109/TSP.2020.3001906.
    [18]
    LUO Zhiquan, MA W, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019.
    [19]
    LIU Fan, LIU Yafeng, LI Ang, et al. Cramér-rao bound optimization for joint radar-communication beamforming[J]. IEEE Transactions on Signal Processing, 2022, 70: 240–253. doi: 10.1109/TSP.2021.3135692.
    [20]
    LIU Xiang, HUANG Tianyao, SHLEZINGER N, et al. Joint transmit beamforming for multiuser MIMO communications and MIMO radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 3929–3944. doi: 10.1109/TSP.2020.3004739.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (114) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return