Citation: | LIN Yuewei, ZHANG Qixun, WEI Zhiqing, LI Xingwang, LIU Fan, FAN Shaoshuai, WANG Yi. Status and Prospect of Hardware Design on Integrated Sensing and Communication[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240012 |
[1] |
孟凡军, 邓炳光, 秦启航, 等. 5G NR小区搜索中一种频域相关快速同步算法[J]. 电讯技术, 2023, 63(4): 563–568. doi: 10.20079/j.issn.1001-893x.211224008.
MENG Fanjun, DENG Bingguang, QIN Qihang, et al. A fast synchronization algorithm based on frequency domain correlation in 5G NR cell search[J]. Telecommunication Engineering, 2023, 63(4): 563–568. doi: 10.20079/j.issn.1001-893x.211224008.
|
[2] |
韩松岳, 苗恺, 李勇, 等. 区块链与5G MEC在军事领域的融合应用[J]. 海军航空大学学报, 2022, 37(4): 301–310. doi: 10.7682/j.issn.2097-1427.2022.04.002.
HAN Songyue, MIAO Kai, LI Yong, et al. Integration application of blockchain and 5G MEC in military field[J]. Journal of Naval Aviation University, 2022, 37(4): 301–310. doi: 10.7682/j.issn.2097-1427.2022.04.002.
|
[3] |
IMT-2030(6G)推进组. 6G网络架构愿景与关键技术展望白皮书[R]. 2021.
IMT-2030(6G) Promotion Group. 6G network architecture vision and key technology outlook white paper[R]. 2021.
|
[4] |
胡圣波, 朱满琴, 杨露露, 等. 未来无线通信与大数据、人工智能[J]. 贵州师范大学学报: 自然科学版, 2020, 38(6): 1–10. doi: 10.16614/j.gznuj.zrb.2020.06.001.
HU Shengbo, ZHU Manqin, YANG Lulu, et al. Future wireless communication, big data and AI[J]. Journal of Guizhou Normal University: Natural Sciences, 2020, 38(6): 1–10. doi: 10.16614/j.gznuj.zrb.2020.06.001.
|
[5] |
王朝炜, 王天宇, 刘婷, 等. 6G车联网中基于路侧设备部署优化的机会式数据卸载[J]. 无线电工程, 2022, 52(11): 1895–1900. doi: 10.3969/j.issn.1003-3106.2022.11.001.
WANG Chaowei, WANG Tianyu, LIU Ting, et al. Opportunistic data offloading based on RSU deployment optimization in 6G internet of vehicle[J]. Radio Engineering, 2022, 52(11): 1895–1900. doi: 10.3969/j.issn.1003-3106.2022.11.001.
|
[6] |
肖沈阳, 金志刚, 苏毅珊, 等. 一种优化的gOMP稀疏OFDM信道估计方法[J]. 工程科学与技术, 2017, 49(5): 149–155. doi: 10.15961/j.jsuese.201601000.
XIAO Shenyang, JIN Zhigang, SU Yishan, et al. An optimized gOMP algorithm for sparse OFDM channel estimation[J]. Advanced Engineering Sciences, 2017, 49(5): 149–155. doi: 10.15961/j.jsuese.201601000.
|
[7] |
庞立华, 吴文捷, 张阳, 等. 多小区Massive MIMO系统的分布式导频优化分配[J]. 西安科技大学学报, 2019, 39(2): 354–359. doi: 10.13800/j.cnki.xakjdxxb.2019.0224.
PANG Lihua, WU Wenjie, ZHANG Yang, et al. Distributed pilot optimizing assignment in multi-cell Massive MIMO systems[J]. Journal of Xi’an University of Science and Technology, 2019, 39(2): 354–359. doi: 10.13800/j.cnki.xakjdxxb.2019.0224.
|
[8] |
IMT-2030(6G)推进组. 通信感知一体化技术研究报告[R]. 2021.
IMT-2030(6G) Promotion Group. Research report on integration of sensing and communication technology[R]. 2021.
|
[9] |
HUANG Yuhong. Challenges and opportunities of sub-6 GHz integrated sensing and communications for 5G-Advanced and beyond[J]. Chinese Journal of Electronics, 2024, 33(2): 323–325. doi: 10.23919/cje.2023.00.251.
|
[10] |
闫实, 彭木根, 王文博. 通信感知计算融合: 6G愿景与关键技术[J]. 北京邮电大学学报, 2021, 44(4): 1–11. doi: 10.13190/j.jbupt.2021-081.
YAN Shi, PENG Mugen, and WANG Wenbo. Integration of communication, sensing and computing: The vision and key technologies of 6G[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(4): 1–11. doi: 10.13190/j.jbupt.2021-081.
|
[11] |
LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632.
|
[12] |
尉志青, 冯志勇, 李怡恒, 等. 太赫兹通信感知一体化波形: 现状与展望[J]. 通信学报, 2022, 43(1): 3–10. doi: 10.11959/j.issn.1000-436x.2022007.
WEI Zhiqing, FENG Zhiyong, LI Yiheng, et al. Terahertz joint communication and sensing waveform: Status and prospect[J]. Journal on Communications, 2022, 43(1): 3–10. doi: 10.11959/j.issn.1000-436x.2022007.
|
[13] |
ZHANG J A, LIU Fan, MASOUROS C, et al. An overview of signal processing techniques for joint communication and radar sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1295–1315. doi: 10.1109/JSTSP.2021.3113120.
|
[14] |
余显斌, 吕治东, 李涟漪, 等. 太赫兹感知通信一体化波形设计与信号处理[J]. 通信学报, 2022, 43(2): 76–88. doi: 10.11959/j.issn.1000-436x.2022015.
YU Xianbin, LYU Zhidong, LI Lianyi, et al. Waveform design and signal processing for terahertz integrated sensing and communication[J]. Journal on Communications, 2022, 43(2): 76–88. doi: 10.11959/j.issn.1000-436x.2022015.
|
[15] |
林粤伟, 王溢, 张奇勋, 等. 面向6G的通信感知一体化车联网研究综述[J]. 信号处理, 2023, 39(6): 963–974. doi: 10.16798/j.issn.1003-0530.2023.06.002.
LIN Yuewei, WANG Yi, ZHANG Qixun, et al. Overview of the research on 6G oriented internet of vehicles for integrated sensing and communication[J]. Journal of Signal Processing, 2023, 39(6): 963–974. doi: 10.16798/j.issn.1003-0530.2023.06.002.
|
[16] |
马忠贵, 李卓, 梁彦鹏. 自动驾驶车联网中通感算融合研究综述与展望[J]. 工程科学学报, 2023, 45(1): 137–149. doi: 10.13374/j.issn2095-9389.2022.04.16.003.
MA Zhonggui, LI Zhuo, and LIANG Yanpeng. Overview and prospect of communication-sensing-computing integration for autonomous driving in the Internet of vehicles[J]. Chinese Journal of Engineering, 2023, 45(1): 137–149. doi: 10.13374/j.issn2095-9389.2022.04.16.003.
|
[17] |
刘鑫, 王忠, 秦明星. 多机器人协同SLAM技术研究进展[J]. 计算机工程, 2022, 48(5): 1–10. doi: 10.19678/j.issn.1000-3428.0062504.
LIU Xin, WANG Zhong, and QIN Mingxing. Research progress of multi-robot collaborative SLAM technology[J]. Computer Engineering, 2022, 48(5): 1–10. doi: 10.19678/j.issn.1000-3428.0062504.
|
[18] |
王红星, 徐婉琳, 张勃阳. 一种基于改进ORB和PROSAC特征点匹配的V-SLAM算法[J]. 河南理工大学学报: 自然科学版, 2023, 42(1): 152–159. doi: 10.16186/j.cnki.1673-9787.2021040137.
WANG Hongxing, XU Wanlin, and ZHANG Boyang. V-SLAM algorithm based on improved ORB and PROSAC feature point matching[J]. Journal of Henan Polytechnic University: Natural Science, 2023, 42(1): 152–159. doi: 10.16186/j.cnki.1673-9787.2021040137.
|
[19] |
谭运馨, 黄海风, 赖涛, 等. 基于GPU的长轨SAR实时成像算法[J]. 数据采集与处理, 2023, 38(6): 1380–1391. doi: 10.16337/j.1004-9037.2023.06.013.
TAN Yunxin, HUANG Haifeng, LAI Tao, et al. GPU-based real-time imaging algorithm for long-track SAR[J]. Journal of Data Acquisition and Processing, 2023, 38(6): 1380–1391. doi: 10.16337/j.1004-9037.2023.06.013.
|
[20] |
刘帅奇, 雷钰, 庞姣, 等. 基于生成对抗网络的SAR图像去噪[J]. 河北大学学报: 自然科学版, 2022, 42(3): 306–313. doi: 10.3969/j.issn.1000-1565.2022.03.013.
LIU Shuaiqi, LEI Yu, PANG Jiao, et al. SAR image denoising based on generative adversarial networks[J]. Journal of Hebei University: Natural Science Edition, 2022, 42(3): 306–313. doi: 10.3969/j.issn.1000-1565.2022.03.013.
|
[21] |
刘光毅, 楼梦婷, 王启星, 等. 面向6G的通信感知一体化架构与关键技术[J]. 移动通信, 2022, 46(6): 8–16. doi: 10.3969/j.issn.1006-1010.2022.06.002.
LIU Guangyi, LOU Mengting, WANG Qixing, et al. Towards 6G: Research on integrated sensing and communication architecture and key technology[J]. Mobile Communications, 2022, 46(6): 8–16. doi: 10.3969/j.issn.1006-1010.2022.06.002.
|
[22] |
叶威, 高树亮. 面向5.5G的通信感知一体化[J]. 信息通信技术, 2021, 15(5): 27–33. doi: 10.3969/j.issn.1674-1285.2021.05.005.
YE Wei and GAO Shuliang. Integrated sensing and communication towards 5.5G[J]. Information and Communications Technologies, 2021, 15(5): 27–33. doi: 10.3969/j.issn.1674-1285.2021.05.005.
|
[23] |
HASSANI S A, PARASHAR K, BOURDOUX A, et al. Doppler radar with in-band full duplex radios[C]. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, Paris, France, 2019: 1945–1953. doi: 10.1109/INFOCOM.2019.8737408.
|
[24] |
刘凡, 袁伟杰, 原进宏, 等. 雷达通信频谱共享及一体化: 综述与展望[J]. 雷达学报, 2021, 10(3): 467–484. doi: 10.12000/JR20113.
LIU Fan, YUAN Weijie, YUAN Jinhong, et al. Radar-communication spectrum sharing and integration: Overview and prospect[J]. Journal of Radars, 2021, 10(3): 467–484. doi: 10.12000/JR20113.
|
[25] |
郝跃星. 恒包络OFDM雷达通信一体化关键技术研究[D]. [硕士论文], 西安电子科技大学, 2017.
HAO Yuexing. Research on the key technology of constant envelop OFDM radar-communication integration[D]. [Master dissertation], Xidian University, 2017.
|
[26] |
张秋月, 张林让, 谷亚彬, 等. 恒包络OFDM雷达通信一体化信号设计[J]. 西安交通大学学报, 2019, 53(6): 77–84. doi: 10.7652/xjtuxb201906011.
ZHANG Qiuyue, ZHANG Linrang, GU Yabin, et al. Signal design of communication integration for radars with constant envelope OFDM[J]. Journal of Xi’an Jiaotong University, 2019, 53(6): 77–84. doi: 10.7652/xjtuxb201906011.
|
[27] |
肖博, 霍凯, 刘永祥. 雷达通信一体化研究现状与发展趋势[J]. 电子与信息学报, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515.
XIAO Bo, HUO Kai, and LIU Yongxiang. Development and prospect of radar and communication integration[J]. Journal of Electronics & Information Technology, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515.
|
[28] |
MCCORMICK P M, BLUNT S D, and METCALF J G. Simultaneous radar and communications emissions from a common aperture, part I: Theory[C]. IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1685–1690. doi: 10.1109/RADAR.2017.7944478.
|
[29] |
MCCORMICK P M, RAVENSCROFT B, BLUNT S D, et al. Simultaneous radar and communication emissions from a common aperture, part II: Experimentation[C]. IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1697–1702. doi: 10.1109/RADAR.2017.7944480.
|
[30] |
IMT-2030 (6G) 推进组. 通信感知一体化技术研究报告[R]. 2版. 2022.
IMT-2030 (6G) Promotion Group. Research report on integrated sensing and communication technology[R]. 2nd ed. 2022.
|
[31] |
BOZORGI F, SEN P, BARRETO A N, et al. RF front-end challenges for joint communication and radar sensing[C]. 1st IEEE International Online Symposium on Joint Communications and Sensing, Dresden, Germany, 2021: 1–6. doi: 10.1109/JCS52304.2021.9376387.
|
[32] |
HAN Liang and WU Ke. Radar and radio data fusion platform for future intelligent transportation system[C]. 7th IEEE European Radar Conference, Paris, France, 2010: 65–68.
|
[33] |
HAN Liang and WU Ke. Emerging advances in transceiver technology fusion of wireless communication and radar sensing systems[C]. IEEE Asia-Pacific Microwave Conference, Melbourne, Australia, 2011: 951–954.
|
[34] |
HAN Liang and WU Ke. Multifunctional transceiver for future intelligent transportation systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(7): 1879–1892. doi: 10.1109/TMTT.2011.2138156.
|
[35] |
MOGHADDASI J and WU Ke. Improved joint radar-radio (RadCom) transceiver for future intelligent transportation platforms and highly mobile high-speed communication systems[C]. IEEE International Wireless Symposium, Beijing, China, 2013: 1–4. doi: 10.1109/IEEE-IWS.2013.6616796.
|
[36] |
MOGHADDASI J and WU Ke. Multifunctional transceiver for future radar sensing and radio communicating data-fusion platform[J]. IEEE Access, 2016, 4: 818–838. doi: 10.1109/ACCESS.2016.2530979.
|
[37] |
ZHANG Hui, LI Lin, and WU Ke. 24GHz software-defined radar system for automotive applications[C]. IEEE European Conference on Wireless Technologies, Munich, Germany, 2007: 138–141. doi: 10.1109/ECWT.2007.4403965.
|
[38] |
HAN Liang and WU Ke. 24-GHz joint radar and radio system capable of time-agile wireless sensing and communication[C]. IEEE MTT-S International Microwave Symposium, Baltimore, USA, 2011: 1–4. doi: 10.1109/MWSYM.2011.5972832.
|
[39] |
HAN Liang and WU Ke. 24-GHz integrated radio and radar system capable of time-agile wireless communication and sensing[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(3): 619–631. doi: 10.1109/TMTT.2011.2179552.
|
[40] |
HAN Liang and WU Ke. Joint wireless communication and radar sensing systems–state of the art and future prospects[J]. IET Microwaves, Antennas & Propagation, 2013, 7(11): 876–885. doi: 10.1049/iet-map.2012.0450.
|
[41] |
MOGHADDASI J and WU Ke. Unified radar-communication (RadCom) multi-port interferometer transceiver[C]. IEEE European Radar Conference, Nuremberg, Germany, 2013: 479–482.
|
[42] |
MOGHADDASI J and WU Ke. Millimeter-wave multifunction multiport interferometric receiver for future wireless systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(3): 1452–1466. doi: 10.1109/TMTT.2017.2772927.
|
[43] |
HASSANI S A, GUEVARA A, PARASHAR K, et al. An in-band full-duplex transceiver for simultaneous communication and environmental sensing[C]. IEEE 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2018: 1389–1394. doi: 10.1109/ACSSC.2018.8645165.
|
[44] |
HASSANI S A, LAMPU V, PARASHAR K, et al. In-band full-duplex radar-communication system[J]. IEEE Systems Journal, 2021, 15(1): 1086–1097. doi: 10.1109/JSYST.2020.2992689.
|
[45] |
HASSANI S A, VAN LIEMPD B, BOURDOUX A, et al. Joint in-band full-duplex communication and radar processing[J]. IEEE Systems Journal, 2022, 16(2): 3391–3399. doi: 10.1109/JSYST.2021.3091383.
|
[46] |
BARNETO C B, RIIHONEN T, TURUNEN M, et al. Full-duplex OFDM radar with LTE and 5G NR waveforms: Challenges, solutions, and measurements[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(10): 4042–4054. doi: 10.1109/TMTT.2019.2930510.
|
[47] |
IOTTI L, KRISHNAMURTHY S, LACAILLE G, et al. A low-power 70-100-GHz mixer-first RX leveraging frequency-translational feedback[J]. IEEE Journal of Solid-State Circuits, 2020, 55(8): 2043–2054. doi: 10.1109/JSSC.2020.2991541.
|
[48] |
MOSTAJERAN A, CATHELIN A, and AFSHARI E. A 170-GHz fully integrated single-chip FMCW imaging radar with 3-D imaging capability[J]. IEEE Journal of Solid-State Circuits, 2017, 52(10): 2721–2734. doi: 10.1109/JSSC.2017.2725963.
|
[49] |
BARNETO C B, TURUNEN M, LIYANAARACHCHI S D, et al. High-accuracy radio sensing in 5G new radio networks: Prospects and self-interference challenge[C]. IEEE 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2019: 1159–1163. doi: 10.1109/IEEECONF44664.2019.9048786.
|
[50] |
VAN LIEMPD B, HERSHBERG B, ARIUMI S, et al. A +70-dBm IIP3 electrical-balance duplexer for highly integrated tunable front-ends[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(12): 4274–4286. doi: 10.1109/TMTT.2016.2613039.
|
[51] |
MIKHAEL M, VAN LIEMPD B, CRANINCKX J, et al. An in-band full-duplex transceiver prototype with an in-system automated tuning for RF self-interference cancellation[C]. 1st IEEE International Conference on 5G for Ubiquitous Connectivity, Akaslompolo, Finland, 2014: 110–115. doi: 10.4108/icst.5gu.2014.258118.
|
[52] |
VERMEULEN T, VAN LIEMPD B, HERSHBERG B, et al. Real-time RF self-interference cancellation for in-band full duplex[C]. IEEE International Symposium on Dynamic Spectrum Access Networks, Stockholm, Sweden, 2015: 275–276. doi: 10.1109/DySPAN.2015.7343915.
|
[53] |
徐诚, 郭进阳, 李超, 等. 使用HLS开发FPGA异构加速系统: 问题、优化方法和机遇[J]. 计算机科学与探索, 2023, 17(8): 1729–1748. doi: 10.3778/j.issn.1673-9418.2210102.
XU Cheng, GUO Jinyang, LI Chao, et al. Using HLS to develop FPGA heterogeneous acceleration system: Problems, optimization methods and opportunities[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1729–1748. doi: 10.3778/j.issn.1673-9418.2210102.
|
[54] |
吴宇航, 何军. 基于FPGA的人体行为识别系统的设计[J]. 南京信息工程大学学报: 自然科学版, 2022, 14(3): 331–340. doi: 10.13878/j.cnki.jnuist.2022.03.009.
WU Yuhang and HE Jun. Design of human activity recognition system based on FPGA[J]. Journal of Nanjing University of Information Science & Technology: Natural Science Edition, 2022, 14(3): 331–340. doi: 10.13878/j.cnki.jnuist.2022.03.009.
|
[55] |
HUUSARI T, CHOI Y S, LIIKKANEN P, et al. Wideband self-adaptive RF cancellation circuit for full-duplex radio: Operating principle and measurements[C]. IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, UK, 2015: 1–7. doi: 10.1109/VTCSpring.2015.7146163.
|
[56] |
HASSANI S A, VAN LIEMPD B, BOURDOUX A, et al. Adaptive filter design for simultaneous in-band full-duplex communication and radar[C]. IEEE 17th European Radar Conference, Utrecht, Netherlands, 2021: 5–8. doi: 10.1109/EuRAD48048.2021.00013.
|
[57] |
HU Xiaoyan, MASOUROS C, LIU Fan, et al. Low-PAPR DFRC MIMO-OFDM waveform design for integrated sensing and communications[C]. IEEE International Conference on Communications, Seoul, Republic of Korea, 2022: 1599–1604. doi: 10.1109/ICC45855.2022.9838548.
|
[58] |
任乐. 毫米波宽带混频与固态合成功放及线性化技术研究[D]. [博士论文], 东南大学, 2022. doi: 10.27014/d.cnki.gdnau.2022.000237.
REN Le. Research on techniques of millimeter wave broadband mixing and solid-state power combined amplifier and linearization[D]. [Ph. D. dissertation], Southeast University, 2022. doi: 10.27014/d.cnki.gdnau.2022.000237.
|
[59] |
GAVELL M, GRANSTROM G, FAGER C, et al. An E-band analog predistorter and power amplifier MMIC chipset[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(1): 31–33. doi: 10.1109/LMWC.2017.2768519.
|
[60] |
DORVAL R, GRAY R, and KATZ A. A versatile wideband linearizer/driver amplifier for use with multiple millimeter-wave TWTAs[C]. IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications, Orlando, USA, 2019: 1–3. doi: 10.1109/PAWR.2019.8708717.
|
[61] |
CHO G, PARK J, and HONG S. A 25.5-dB peak gain F-band power amplifier with an adaptive built-in linearizer[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(1): 106–108. doi: 10.1109/LMWC.2019.2954217.
|
[62] |
OTHMANI M, BOULEJFEN N, BRIHUEGA A, et al. Delta-Sigma modulator-embedded digital predistortion for 5G transmitter linearization[J]. IEEE Transactions on Communications, 2022, 70(8): 5558–5571. doi: 10.1109/TCOMM.2022.3184167.
|
[63] |
MOSALAM H, XIAO Wenbo, GUI Xiaoyan, et al. A 54–68 GHz power amplifier with improved linearity and efficiency in 40 nm CMOS[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(1): 40–44. doi: 10.1109/TCSII.2021.3084628.
|
[64] |
MA Zonglin, MA Kaixue, WANG Keping, et al. A 28GHz compact 3-way transformer-based parallel-series Doherty power amplifier with 20.4%/14.2% PAE at 6-/12-dB power back-off and 25.5dBm PSAT in 55nm bulk CMOS[C]. IEEE International Solid-State Circuits Conference, San Francisco, USA, 2022: 320–322. doi: 10.1109/ISSCC42614.2022.9731564.
|
[65] |
于飞. 毫米波线性化器研究[D]. [硕士论文], 电子科技大学, 2020. doi: 10.27005/d.cnki.gdzku.2020.001942.
YU Fei. Research of millimeter wave linearizer[D]. [Master dissertation], University of Electronic Science and Technology of China, 2020. doi: 10.27005/d.cnki.gdzku.2020.001942.
|
[66] |
张净植, 余益明, 吴韵秋, 等. 硅基毫米波集成电路设计发展现状与挑战[J]. 中国科学: 信息科学, 2024, 54(1): 68–87. doi: 10.1360/SSI-2023-0334.
ZHANG Jingzhi, YU Yiming, WU Yunqiu, et al. Developments and challenges of mm-Wave integrated circuits on silicon[J]. Scientia Sinica Informationis, 2024, 54(1): 68–87. doi: 10.1360/SSI-2023-0334.
|
[67] |
EISENSTADT W R and EO Y. S-parameter-based IC interconnect transmission line characterization[J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1992, 15(4): 483–490. doi: 10.1109/33.159877.
|
[68] |
魏震楠. 毫米波通信的功率放大器芯片及片上器件高精度建模研究[D]. [博士论文], 东南大学, 2022. doi: 10.27014/d.cnki.gdnau.2022.003568.
WEI Zhennan. Research on power amplifier and high-precision modeling of on-chip devices for millimeter-wave communications[D]. [Ph. D. dissertation], Southeast University, 2022. doi: 10.27014/d.cnki.gdnau.2022.003568.
|
[69] |
TANG Zhidong, WANG Zewei, GUO Ao, et al. Cryogenic CMOS RF device modeling for scalable quantum computer design[J]. IEEE Journal of the Electron Devices Society, 2022, 10: 532–539. doi: 10.1109/JEDS.2022.3186979.
|
[70] |
STURM C, ZWICK T, and WIESBECK W. An OFDM system concept for joint radar and communications operations[C]. 69th IEEE Vehicular Technology Conference, Barcelona, Spain, 2009: 1–5. doi: 10.1109/VETECS.2009.5073387.
|
[71] |
STURM C and WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. doi: 10.1109/JPROC.2011.2131110.
|
[72] |
BRAUN M, MÜLLER M, FUHR M, et al. A USRP-based testbed for OFDM-based radar and communication systems[C]. Proceedings of 22nd Virginia Tech Symposium on Wireless Communications, Blacksburg, USA, 2012: 1–6.
|
[73] |
MEALEY T C and DULY A J. BEEMER: A firmware-tuned, software-defined MIMO radar testbed[C]. IEEE International Symposium on Phased Array Systems and Technology, Waltham, USA, 2016: 1–6. doi: 10.1109/ARRAY.2016.7832582.
|
[74] |
RAVENSCROFT B, MCCORMICK P M, BLUNT S, et al. Experimental assessment of tandem-hopped radar and communications (THoRaCs)[C]. IEEE International Radar Conference, Toulon, France, 2019: 1–6. doi: 10.1109/RADAR41533.2019.171280.
|
[75] |
KUMARI P, MEZGHANI A, and HEATH R W. JCR70: A low-complexity millimeter-wave proof-of-concept platform for a fully-digital SIMO joint communication-radar[J]. IEEE Open Journal of Vehicular Technology, 2021, 2: 218–234. doi: 10.1109/OJVT.2021.3069946.
|
[76] |
BARNETO C B, LIYANAARACHCHI S D, HEINO M, et al. Full duplex radio/radar technology: The enabler for advanced joint communication and sensing[J]. IEEE Wireless Communications, 2021, 28(1): 82–88. doi: 10.1109/MWC.001.2000220.
|
[77] |
SANSON J B, CASTANHEIRA D, GAMEIRO A, et al. Non-orthogonal multicarrier waveform for radar with communications systems: 24 GHz GFDM RadCom[J]. IEEE Access, 2019, 7: 128694–128705. doi: 10.1109/ACCESS.2019.2940299.
|
[78] |
ZHANG Qixun, SUN Huan, WEI Zhiqing, et al. Sensing and communication integrated system for autonomous driving vehicles[C]. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops, Toronto, Canada, 2020: 1278–1279. doi: 10.1109/INFOCOMWKSHPS50562.2020.9162963.
|
[79] |
ZHANG Qixun, LI Zhenhao, GAO Xinye, et al. Performance evaluation of radar and communication integrated system for autonomous driving vehicles[C]. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops, Vancouver, Canada, 2021: 1–2. doi: 10.1109/INFOCOMWKSHPS51825.2021.9484463.
|
[80] |
ZHANG Qixun, WANG Xinna, LI Zhenhao, et al. Design and performance evaluation of joint sensing and communication integrated system for 5G mmWave enabled CAVs[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1500–1514. doi: 10.1109/JSTSP.2021.3109666.
|
[81] |
Online video[EB/OL]. https://www.chaspark.com/#/coffeeHours/media/809260877825687552.2023.1.
|
[82] |
MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. Spatial modulation for joint radar-communications systems: Design, analysis, and hardware prototype[J]. IEEE Transactions on Vehicular Technology, 2021, 70(3): 2283–2298. doi: 10.1109/TVT.2021.3056408.
|
[83] |
XU Tongyang, LIU Fan, MASOUROS C, et al. An experimental proof of concept for integrated sensing and communications waveform design[J]. IEEE Open Journal of the Communications Society, 2022, 3: 1643–1655. doi: 10.1109/OJCOMS.2022.3209641.
|
[84] |
ZHANG Qixun and GAO Xinye. Joint communication and sensing enabled cooperative perception testbed for connected automated vehicles[C]. IEEE INFOCOM 2022-IEEE Conference on Computer Communications Workshops, New York, USA, 2022: 1–2. doi: 10.1109/INFOCOMWKSHPS54753.2022.9798074.
|
[85] |
ZHANG Qixun, SUN Hongzhuo, GAO Xinye, et al. Time-division ISAC enabled connected automated vehicles cooperation algorithm design and performance evaluation[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2206–2218. doi: 10.1109/JSAC.2022.3155506.
|
[86] |
WANG Jie, LIANG Xingdong, CHEN Longyong, et al. Joint wireless communication and high resolution SAR imaging using airborne MIMO radar system[C]. IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 2511–2514. doi: 10.1109/IGARSS.2019.8897826.
|
[87] |
WANG Jie, LIANG Xingdong, CHEN Longyong, et al. First demonstration of joint wireless communication and high-resolution SAR imaging using airborne MIMO radar system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6619–6632. doi: 10.1109/TGRS.2019.2907561.
|
[88] |
WANG Jie, LIANG Xingdong, CHEN Longyong, et al. First demonstration of airborne MIMO SAR system for multimodal operation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5204113. doi: 10.1109/TGRS.2021.3066478.
|
[89] |
唐家政. 基于数据库划分的改进WLAN室内指纹定位研究[D]. [硕士论文], 南京邮电大学, 2022. doi: 10.27251/d.cnki.gnjdc.2022.000400.
TANG Jiazheng. Research on improved WLAN indoor fingerprint location based on database partition[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2022. doi: 10.27251/d.cnki.gnjdc.2022.000400.
|
[90] |
高畅蔓. 基于CSI图像特征的室内定位技术[D]. [硕士论文], 南京邮电大学, 2022. doi: 10.27251/d.cnki.gnjdc.2022.000476.
GAO Changman. CSI indoor location technology based on image features[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2022. doi: 10.27251/d.cnki.gnjdc.2022.000476.
|
[91] |
LI Yang, WU Dan, ZHANG Jie, et al. DiverSense: Maximizing Wi-Fi sensing range leveraging signal diversity[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2022, 6(2): 94. doi: 10.1145/3536393.
|
[92] |
WANG Guanhua, ZOU Yongpan, ZHOU Zimu, et al. We can hear you with Wi-Fi![C]. Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, Maui, USA, 2014: 593–604. doi: 10.1145/2639108.2639112.
|
[93] |
徐晓东, 李岩, 叶威, 等. 通信感知一体化应用场景、关键技术和网络架构[J]. 移动通信, 2022, 46(5): 2–8. doi: 10.3969/j.issn.1006-1010.2022.05.001.
XU Xiaodong, LI Yan, YE Wei, et al. Application scenarios, key technologies and network architecture of integrated sensing and communication[J]. Mobile Communications, 2022, 46(5): 2–8. doi: 10.3969/j.issn.1006-1010.2022.05.001.
|
[94] |
SAKHNINI A, DE BAST S, GUENACH M, et al. Near-field coherent radar sensing using a massive MIMO communication testbed[J]. IEEE Transactions on Wireless Communications, 2022, 21(8): 6256–6270. doi: 10.1109/TWC.2022.3148035.
|
[95] |
SAKHNINI A, DE BAST S, GUENACH M, et al. An experimental evaluation of robust near-field radar localization using a massive MIMO testbed[C]. 2nd IEEE International Symposium on Joint Communications and Sensing, Seefeld, Austria, 2022: 1–6. doi: 10.1109/JCS54387.2022.9743499.
|
[96] |
LI Oupeng, HE Jia, ZENG Kun, et al. Integrated sensing and communication in 6G a prototype of high resolution THz sensing on portable device[C]. IEEE Joint European Conference on Networks and Communications and 6G Summit, Porto, Portugal, 2021: 544–549. doi: 10.1109/EuCNC/6GSummit51104.2021.9482537.
|
[97] |
TAN D K P, HE Jia, LI Yanchun, et al. Integrated sensing and communication in 6G: Motivations, use cases, requirements, challenges and future directions[C]. 1st IEEE International Online Symposium on Joint Communications and Sensing, Dresden, Germany, 2021: 1–6. doi: 10.1109/JCS52304.2021.9376324.
|
[98] |
张若愚, 袁伟杰, 崔原豪, 等. 面向6G的大规模MIMO通信感知一体化: 现状与展望[J]. 移动通信, 2022, 46(6): 17–23. doi: 10.3969/j.issn.1006-1010.2022.06.003.
ZHANG Ruoyu, YUAN Weijie, CUI Yuanhao, et al. Integrated sensing and communications with massive MIMO for 6G: Status and prospect[J]. Mobile Communications, 2022, 46(6): 17–23. doi: 10.3969/j.issn.1006-1010.2022.06.003.
|
[99] |
杨杰, 黄艺璇, 杜涛, 等. 通信感知一体化原型验证的研究现状与发展趋势[J]. 通信学报, 2023, 44(11): 43–54. doi: 10.11959/j.issn.1000-436x.2023205.
YANG Jie, HUANG Yixuan, DU Tao, et al. Prototype verification for integrated sensing and communications: Current status and development trends[J]. Journal on Communications, 2023, 44(11): 43–54. doi: 10.11959/j.issn.1000-436x.2023205.
|
[100] |
王欢, 王陶冶, 商惠敏, 等. 基于ChatGPT的通用人工智能发展情况及对广东的启示[J]. 自动化与信息工程, 2023, 44(6): 9–14,28. doi: 10.3969/j.issn.1674-2605.2023.06.002.
WANG Huan, WANG Taoye, SHANG Huimin, et al. The development of general artificial intelligence based on ChatGPT and its inspiration for Guangdong[J]. Automation & Information Engineering, 2023, 44(6): 9–14,28. doi: 10.3969/j.issn.1674-2605.2023.06.002.
|