Advanced Search
Volume 46 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
WU Huagan, BIAN Yixuan, CHEN Mo, XU Quan. Multistable State and Phase Synchronization of Memristor-coupled Heterogeneous Memristive Cellular Neural Network[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3818-3826. doi: 10.11999/JEIT240010
Citation: WU Huagan, BIAN Yixuan, CHEN Mo, XU Quan. Multistable State and Phase Synchronization of Memristor-coupled Heterogeneous Memristive Cellular Neural Network[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3818-3826. doi: 10.11999/JEIT240010

Multistable State and Phase Synchronization of Memristor-coupled Heterogeneous Memristive Cellular Neural Network

doi: 10.11999/JEIT240010
Funds:  The National Natural Science Foundation of China (62371073, 12172066, 52277001), The Postgraduate Education Reform Projects of Jiangsu Province (KYCX23_3181)
  • Received Date: 2024-01-16
  • Rev Recd Date: 2024-04-02
  • Available Online: 2024-04-23
  • Publish Date: 2024-09-26
  • Memristors have a natural plasticity that enables silicon-based neurons and nano-synapses with similar or the same mechanisms as biological neurons and synapses. Using a memristor as a synapse to couple two heterogeneous memristive cellular neural networks, a memristor-coupled heterogeneous cellular neural network is constructed in this paper. The coupled network contains a space equilibrium set related to the initial value conditions of memristor synapse and subnets, which can exhibit complex dynamic evolution. The multi-stable behaviors of the coupling network, such as stable point, period, chaos, hyperchaos and unbounded oscillation, which depend on the initial value conditions, are revealed by numerical simulation method. In addition, under the control of memristor synapse, two heterogeneous subnets can achieve phase synchronization. Finally, the experimental verification of the circuit is completed based on STM32 MCU hardware platform.
  • loading
  • [1]
    王春华, 蔺海荣, 孙晶如, 等. 基于忆阻器的混沌、存储器及神经网络电路研究进展[J]. 电子与信息学报, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821.

    WANG Chunhua, LIN Hairong, SUN Jingru, et al. Research progress on chaos, memory and neural network circuits based on memristor[J]. Journal of Electronics & Information Technology, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821.
    [2]
    YANG Xiaoyuan, TAYLOR B, WU Ailong, et al. Research progress on memristor: From synapses to computing systems[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2022, 69(5): 1845–1857. doi: 10.1109/TCSI.2022.3159153.
    [3]
    KONG Xinxin, YU Fei, YAO Wei, et al. Memristor-induced hyperchaos, multiscroll and extreme multistability in fractional-order HNN: Image encryption and FPGA implementation[J]. Neural Networks, 2024, 171: 85–103. doi: 10.1016/j.neunet.2023.12.008.
    [4]
    XU Quan, WANG Yiteng, CHEN Bei, et al. Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation[J]. Chaos, Solitons & Fractals, 2023, 172: 113627. doi: 10.1016/j.chaos.2023.113627.
    [5]
    VIJAY S D, THAMILMARAN K, and AHAMED A I. Superextreme spiking oscillations and multistability in a memristor-based Hindmarsh–Rose neuron model[J]. Nonlinear Dynamics, 2023, 111(1): 789–799. doi: 10.1007/s11071-022-07850-4.
    [6]
    唐利红, 贺宗梅, 姚延立. 忆阻Hopfield神经网络动力学分析及其电路实现[J]. 计算物理, 2022, 39(2): 244–252. doi: 10.19596/j.cnki.1001-246x.8386.

    TANG Lihong, HE Zongmei, and YAO Yanli. Dynamical analysis and circuit implementation of a memristive Hopfield neural network[J]. Chinese Journal of Computational Physics, 2022, 39(2): 244–252. doi: 10.19596/j.cnki.1001-246x.8386.
    [7]
    WANG Yibo, MIN Fuhong, CHENG Yizi, et al. Dynamical analysis in dual-memristor-based FitzHugh–Nagumo circuit and its coupling finite-time synchronization[J]. The European Physical Journal Special Topics, 2021, 230(7): 1751–1762. doi: 10.1140/epjs/s11734-021-00121-0.
    [8]
    HU Bin, GUAN Zhihong, CHEN Guanrong, et al. Multistability of delayed hybrid impulsive neural networks with application to associative memories[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(5): 1537–1551. doi: 10.1109/TNNLS.2018.2870553.
    [9]
    FANG Shitong, ZHOU Shengxi, YURCHENKO D, et al. Multistability phenomenon in signal processing, energy harvesting, composite structures, and metamaterials: A review[J]. Mechanical Systems and Signal Processing, 2022, 166: 108419. doi: 10.1016/j.ymssp.2021.108419.
    [10]
    FLAK J, LAIHO M, PAASIO A, et al. Dense CMOS implementation of a binary-programmable cellular neural network[J]. International Journal of Circuit Theory and Applications, 2006, 34(4): 429–443. doi: 10.1002/cta.365.
    [11]
    LIU Zhongyang, LUO Shaoheng, XU Xiaowei, et al. A multi-level-optimization framework for FPGA-based cellular neural network implementation[J]. ACM Journal on Emerging Technologies in Computing Systems, 2018, 14(4): 47. doi: 10.1145/3273957.
    [12]
    CHEN Qun, LI Bo, YIN Wei, et al. Bifurcation, chaos and fixed-time synchronization of memristor cellular neural networks[J]. Chaos, Solitons & Fractals, 2023, 171: 113440. doi: 10.1016/j.chaos.2023.113440.
    [13]
    XIU Chunbo, ZHOU Ruxia, and LIU Yuxia. New chaotic memristive cellular neural network and its application in secure communication system[J]. Chaos, Solitons & Fractals, 2020, 141: 110316. doi: 10.1016/j.chaos.2020.110316.
    [14]
    DUAN Shukai, HU Xiaofang, DONG Zhekang, et al. Memristor-based cellular nonlinear/neural network: Design, analysis, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(6): 1202–1213. doi: 10.1109/TNNLS.2014.2334701.
    [15]
    BILOTTA E, PANTANO P, and VENA S. Speeding up cellular neural network processing ability by embodying memristors[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(5): 1228–1232. doi: 10.1109/TNNLS.2015.2511818.
    [16]
    XIU Chunbo and LI Xin. Edge extraction based on memristor cell neural network with fractional order template[J]. IEEE Access, 2019, 7: 90750–90759. doi: 10.1109/ACCESS.2019.2927225.
    [17]
    BARTSCH R, KANTELHARDT J W, PENZEL T, et al. Experimental evidence for phase synchronization transitions in the human cardiorespiratory system[J]. Physical Review Letters, 2007, 98(5): 054102. doi: 10.1103/PhysRevLett.98.054102.
    [18]
    ECKHORN R. Neural mechanisms of scene segmentation: Recordings from the visual cortex suggest basic circuits for linking field models[J]. IEEE Transactions on Neural Networks, 1999, 10(3): 464–479. doi: 10.1109/72.761705.
    [19]
    UHLHAAS P J and SINGER W. Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology[J]. Neuron, 2006, 52(1): 155–168. doi: 10.1016/j.neuron.2006.09.020.
    [20]
    ZHANG Qingguang, PATWARDHAN A R, KNAPP C F, et al. Cardiovascular and cardiorespiratory phase synchronization in normovolemic and hypovolemic humans[J]. European Journal of Applied Physiology, 2015, 115(2): 417–427. doi: 10.1007/s00421-014-3017-4.
    [21]
    YU Xihong, BAO Han, CHEN Mo, et al. Energy balance via memristor synapse in Morris-Lecar two-neuron network with FPGA implementation[J]. Chaos, Solitons & Fractals, 2023, 171: 113442. doi: 10.1016/j.chaos.2023.113442.
    [22]
    LI Zhijun, ZHOU Haiyan, WANG Mengjiao, et al. Coexisting firing patterns and phase synchronization in locally active memristor coupled neurons with HR and FN models[J]. Nonlinear Dynamics, 2021, 104(2): 1455–1473. doi: 10.1007/s11071-021-06315-4.
    [23]
    武花干, 周杰, 陈胜垚, 等. 非对称忆阻诱导的吸引子非对称演化与机理研究[J]. 电子与信息学报, 2022, 44(6): 2101–2109. doi: 10.11999/JEIT210307.

    WU Huagan, ZHOU Jie, CHEN Shengyao, et al. Asymmetric memristor-induced attractor asymmetric evolution and its mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2101–2109. doi: 10.11999/JEIT210307.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (295) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return