Advanced Search
Turn off MathJax
Article Contents
YANG Xiaolong, ZHANG Bingrui, ZHOU Mu, ZHANG Wen. A Joint Parameter Estimation Method Based on 3D Matrix Pencil for Integration of Sensing and Communication[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240003
Citation: YANG Xiaolong, ZHANG Bingrui, ZHOU Mu, ZHANG Wen. A Joint Parameter Estimation Method Based on 3D Matrix Pencil for Integration of Sensing and Communication[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240003

A Joint Parameter Estimation Method Based on 3D Matrix Pencil for Integration of Sensing and Communication

doi: 10.11999/JEIT240003
Funds:  The National Natural Science Foundation of China (62101085), The Science and Technology Research Project of Chongqing Jiulongpo District (2022-02-005-Z), Chongqing Graduate Student Research Innovation Project (CYS23457)
  • Received Date: 2024-01-16
  • Rev Recd Date: 2024-07-03
  • Available Online: 2024-08-02
  • As a new information communication technology based on software and hardware resource sharing and information sharing, Integration of Sensing and Communication (ISAC) can integrate wireless sensing into Wi-Fi platforms, providing an efficient method for low-cost indoor localization. Focusing on the problem of real-time and accuracy of indoor positioning parameter estimation, a joint parameter estimation algorithm based on three Dimensional (3D) Matrix Pencil (MP) is proposed. First, the Channel State Information (CSI) data is analyzed and a 3D matrix containing Angle of Arrival (AoA), Time of Flight (ToF), and Doppler Frequency Shift (DFS) is constructed. Secondly, the 3D matrix is smoothed and the 3D MP algorithm is used for parameter estimation, the direct path is found by clustering. Finally, the triangulation method is used for positioning to verify the effectiveness of the proposed algorithm. Experimental results show that compared with the MUltiple SIgnal Classification (MUSIC) parameter estimation algorithm, there is no need for complicated peak search steps, and the computational complexity is reduced by 90%. Compared with the two-dimensional MP algorithm, adding DFS can effectively improve the resolution and accuracy of parameter estimation. The actual test verifies that the proposed algorithm can achieve an average positioning accuracy of 0.56 m at a confidence level of 67% indoors. Therefore, the proposed algorithm effectively improves the real-time and accuracy of the existing indoor positioning parameter estimation.
  • loading
  • [1]
    LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632.
    [2]
    KIM K, KIM J, and JOUNG J. A survey on system configurations of integrated sensing and communication (ISAC) systems[C]. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, The Republic of Korea, 2022: 1176–1178. doi: 10.1109/ICTC55196.2022.9952602.
    [3]
    DING Jianyang, WANG Yong, SI Hongyan, et al. Three-dimensional indoor localization and tracking for mobile target based on WiFi sensing[J]. IEEE Internet of Things Journal, 2022, 9(21): 21687–21701. doi: 10.1109/JIOT.2022.3181592.
    [4]
    DUBEY A, SOOD P, SANTOS J, et al. An enhanced approach to imaging the indoor environment using WiFi RSSI measurements[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 8415–8430. doi: 10.1109/TVT.2021.3101009.
    [5]
    LI Fangmin, ZHAO Yubin, LI Xiaofan, et al. Wimage: Crowd sensing based heterogeneous information fusion for indoor localization[C]. 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea (South), 2020: 1–6. doi: 10.1109/WCNC45663.2020.9120796.
    [6]
    JIN Yue, TIAN Zengshan, ZHOU Mu, et al. MuTrack: Multiparameter based indoor passive tracking system using commodity WiFi[C]. ICC 2020 - 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–6. doi: 10.1109/ICC40277.2020.9148887.
    [7]
    JIN Yue, TIAN Zengshan, LI Yong, et al. A novel device-free tracking system using WiFi: Turning fading channel from foe to friend[C]. ICC 2020 - 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–6. doi: 10.1109/ICC40277.2020.9148609.
    [8]
    田增山, 廉颖慧, 周牧, 等. 基于Wi-Fi多维参数特征的无源目标跟踪技术[J]. 电子学报, 2020, 48(8): 1572–1579. doi: 10.3969/j.issn.0372-2112.2020.08.016.

    TIAN Zengshan, LIAN Yinghui, ZHOU Mu, et al. Passive target tracking technology based on Wi-Fi multi-dimensional parameter feature[J]. Acta Electronica Sinica, 2020, 48(8): 1572–1579. doi: 10.3969/j.issn.0372-2112.2020.08.016.
    [9]
    WANG Zhe, KONG Linghe, LIU Xue, et al. Embracing channel estimation in multi-packet reception of ZigBee[J]. IEEE Transactions on Mobile Computing, 2023, 22(5): 2693–2708. doi: 10.1109/TMC.2021.3131472.
    [10]
    ZHUANG Yuan, ZHANG Chongyang, HUAI Jianzhu, et al. Bluetooth localization technology: Principles, applications, and future trends[J]. IEEE Internet of Things Journal, 2022, 9(23): 23506–23524. doi: 10.1109/JIOT.2022.3203414.
    [11]
    LIU Zheng, FU Zhe, LI Tongyun, et al. A phase and RSSI-based method for indoor localization using passive RFID system with mobile platform[J]. IEEE Journal of Radio Frequency Identification, 2022, 6: 544–551. doi: 10.1109/JRFID.2022.3179620.
    [12]
    YU Jintao, XIAO Bing, and LI Jie. Research on UWB indoor location approach in interference environment[C]. 2022 34th Chinese Control and Decision Conference (CCDC), Hefei, China, 2022: 3417–3420. doi: 10.1109/CCDC55256.2022.10034389.
    [13]
    田增山, 未平, 李泽, 等. 基于Wi-Fi的室内实时角度定位算法[J]. 电子学报, 2021, 49(2): 408–416. doi: 10.12263/DZXB.20190352.

    TIAN Zengshan, WEI Ping, LI Ze, et al. Indoor real-time localization algorithm based on angle of arrival of Wi-Fi signal[J]. Acta Electronica Sinica, 2021, 49(2): 408–416. doi: 10.12263/DZXB.20190352.
    [14]
    CHEN Longliang, QI Wangdong, YUAN En, et al. Joint 2-D DOA and TOA estimation for multipath OFDM signals based on three antennas[J]. IEEE Communications Letters, 2018, 22(2): 324–327. doi: 10.1109/LCOMM.2017.2769678.
    [15]
    NOMURA A, SUGASAKI M, TSUBOUCHI K, et al. Device-free multi-person indoor localization using the change of ToF[C]. 2023 IEEE International Conference on Pervasive Computing and Communications (PerCom), Atlanta, USA, 2023: 190–199. doi: 10.1109/PERCOM56429.2023.10099384.
    [16]
    TADAYON N, RAHMAN M T, HAN Shuo, et al. Decimeter ranging with channel state information[J]. IEEE Transactions on Wireless Communications, 2019, 18(7): 3453–3468. doi: 10.1109/TWC.2019.2914194.
    [17]
    ZHANG Dongheng, HU Yang, and CHEN Yan. MTrack: Tracking multiperson moving trajectories and vital signs with radio signals[J]. IEEE Internet of Things Journal, 2021, 8(5): 3904–3914. doi: 10.1109/JIOT.2020.3025820.
    [18]
    LI Xinyu, ZHANG J A, WU Kai, et al. CSI-ratio-based Doppler frequency estimation in integrated sensing and communications[J]. IEEE Sensors Journal, 2022, 22(21): 20886–20895. doi: 10.1109/JSEN.2022.3208272.
    [19]
    XIE Yaxiong, LI Zhenjiang, and LI Mo. Precise power delay profiling with commodity Wi-Fi[J]. IEEE Transactions on Mobile Computing, 2019, 18(6): 1342–1355. doi: 10.1109/TMC.2018.2860991.
    [20]
    TAN Bo, BURROWS A, PIECHOCKI R, et al. Wi-Fi based passive human motion sensing for in-home healthcare applications[C]. 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, 2015: 609–614. doi: 10.1109/WF-IoT.2015.7389123.
    [21]
    KHAN U M, KABIR Z, HASSAN S A, et al. A deep learning framework using passive Wi-Fi sensing for respiration monitoring[C]. GLOBECOM 2017 - 2017 IEEE Global Communications Conference, Singapore, Singapore, 2017: 1–6. doi: 10.1109/GLOCOM.2017.8255027.
    [22]
    KOTARU M, JOSHI K, BHARADIA D, et al. SpotFi: Decimeter level localization using WiFi[C]. 2015 ACM Conference on Special Interest Group on Data Communication, London, UK, 2015: 269–282. doi: 10.1145/2785956.2787487.
    [23]
    GABER A and OMAR A. A study of wireless indoor positioning based on joint TDOA and DOA estimation using 2-D matrix pencil algorithms and IEEE 802.11ac[J]. IEEE Transactions on Wireless Communications, 2015, 14(5): 2440–2454. doi: 10.1109/TWC.2014.2386869.
    [24]
    CHEN Zhe, ZHU Guorong, WANG Sulei, et al. M3: Multipath assisted Wi-Fi localization with a single access point[J]. IEEE Transactions on Mobile Computing, 2021, 20(2): 588–602. doi: 10.1109/TMC.2019.2950315.
    [25]
    SOLTANAGHAEI E, KALYANARAMAN A, and WHITEHOUSE K. Multipath triangulation: Decimeter-level WiFi localization and orientation with a single unaided receiver[C]. The 16th Annual International Conference on Mobile Systems, Applications, and Services, Munich, Germany, 2018: 376–388. doi: 10.1145/3210240.3210347.
    [26]
    YANG Runming, YANG Xiaolong, WANG Jiacheng, et al. Decimeter level indoor localization using WiFi channel state information[J]. IEEE Sensors Journal, 2022, 22(6): 4940–4950. doi: 10.1109/JSEN.2021.3067144.
    [27]
    SHE Yuan, YANG Xiaolong, ZHOU Mu, et al. Three-dimensional joint parameter estimation algorithm based on service antenna[C]. 2020 International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 2020, 442–447. doi: 10.1109/WCSP49889.2020.9299753.
    [28]
    LIU Aijun, GUO Zhichao, and WANG Mingfeng. Time-frequency spatial smoothing MUSIC algorithm for DOA estimation based on co-prime array[C]. Proceedings of 2018 CSPS Volume II: Signal Processing on Communications, Signal Processing, and Systems, Dalian, China, 2020: 1355–1363. doi: 10.1007/978-981-13-6504-1_161.
    [29]
    YILMAZER N, KOH J, and SARKAR T K. Utilization of a unitary transform for efficient computation in the matrix pencil method to find the direction of arrival[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(1): 175–181. doi: 10.1109/TAP.2005.861567.
    [30]
    FREY B J and DUECK D. Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972–976. doi: 10.1126/science.1136800.
    [31]
    YANG Xiaolong, GAO Meng, XIE Liangbo, et al. Multi-frequency based CSI compression for vehicle localization in intelligent transportation system[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(3): 2719–2732. doi: 10.1109/TITS.2023.3310032.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (241) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return