Advanced Search
Turn off MathJax
Article Contents
WANG Dizhu, JIN Yi, ZUO Jinzhong, XU Changzhi, LIANG Huijian, GOU Baowei. Baseband Modulation Signal Generation and Phase Synchronization Method of Space High Speed Optical Communication[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT231460
Citation: WANG Dizhu, JIN Yi, ZUO Jinzhong, XU Changzhi, LIANG Huijian, GOU Baowei. Baseband Modulation Signal Generation and Phase Synchronization Method of Space High Speed Optical Communication[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT231460

Baseband Modulation Signal Generation and Phase Synchronization Method of Space High Speed Optical Communication

doi: 10.11999/JEIT231460
Funds:  The National Natural Science Foundation of China (62301418), The State Key Laboratory Stability Support Fund (HTKJ2022KL504006)
  • Received Date: 2024-01-09
  • Rev Recd Date: 2024-03-18
  • Available Online: 2024-03-26
  • The high-quality generation and precise phase synchronization of high-speed modulated baseband signals are key technologies of space optical communication ranging system. Traditional approaches relying on FPGA or Digital Signal Processor (DSP) and high-speed Digital to Analog Convertor (DAC) technology often suffer from limited phase synchronization accuracy and high hardware complexity. A method for high-speed optical communication baseband signal generation and phase synchronization is proposed and a phase-locked dynamic control loop is designed in this paper. By dynamically adjusting the phase of the high-speed signal transmission clock in real time, the deterministic relationship between the I/Q high-speed baseband signal phase and the external reference clock phase can be achieved. The experimental results demonstrate impressive performance metrics: When the code rate is of the Quadrature Phase Shift Keying (QPSK) optical modulated signal is 2.5 Gbit/s, the phase synchronization accuracy is less than 2 ps and the Error Vector Magnitude (EVM) is less than 8%; the bit error rate is 10–7 at a 5 Gbit/s optical communication rate, the receiver sensitivity is better than –47 dBm, and the ranging accuracy is better than 2 mm. Compared with traditional methods, both sensitivity and ranging accuracy are significantly improved.
  • loading
  • [1]
    IDRIS S, SELMY H, and LOPES W T A. Performance analysis of hybrid MPAPM technique for deep-space optical communications[J]. IET Communications, 2021, 15(13): 1700–1709. doi: 10.1049/cmu2.12182.
    [2]
    WANG Qiang, ZHAO Guoqiang, MA Jing, et al. Demonstration and verification experiment in deep space optical communications[J]. Optics Communications, 2022, 507: 127605. doi: 10.1016/j.optcom.2021.127605.
    [3]
    李宝龙, 施建锋, 吴勤勤, 等. 可见光通信中融合VOOK和分层OFDM的高效频谱混合调制方法[J]. 电子与信息学报, 2022, 44(8): 2639–2648. doi: 10.11999/JEIT220368.

    LI Baolong, SHI Jianfeng, WU Qinqin, et al. Spectrum-efficient hybrid modulation based on VOOK and layered OFDM for visible light communications[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2639–2648. doi: 10.11999/JEIT220368.
    [4]
    GUIOMAR F P, FERNANDES M A, NASCIMENTO J L, et al. Coherent free-space optical communications: Opportunities and challenges[J]. Journal of Lightwave Technology, 2022, 40(10): 3173–3186. doi: 10.1109/JLT.2022.3164736.
    [5]
    LI Kangning, LIN Bo, and MA Jing. DPSK modulated multiple apertures receiver system for satellite-to-ground heterodyne optical communication[J]. Optics Communications, 2020, 454: 124466. doi: 10.1016/j.optcom.2019.124466.
    [6]
    BHOWAL A and KSHETRIMAYUM R S. Advanced optical spatial modulation techniques for FSO communication[J]. IEEE Transactions on Communications, 2021, 69(2): 1163–1174. doi: 10.1109/TCOMM.2020.3035400.
    [7]
    肖尚辉, 刘简, 胡波, 等. 基于低采样率数模转换器和模数转换器的太赫兹发射机线性化[J]. 电子与信息学报, 2023, 45(2): 718–724. doi: 10.11999/JEIT211304.

    XIAO Shanghui, LIU Jian, HU Bo, et al. Linearization of terahertz transmitter based on low sampling rate DAC and ADC[J]. Journal of Electronics & Information Technology, 2023, 45(2): 718–724. doi: 10.11999/JEIT211304.
    [8]
    WANG Feng, HU Guijun, DU Te, et al. Performance research of mPPM-QPSK modulation signal for free space optical communication[J]. Optics Communications, 2020, 457: 124646. doi: 10.1016/j.optcom.2019.124646.
    [9]
    吕红亮. 基于JESD204B接口DAC的任意波形发生模块同步性分析及验证[D]. [硕士论文], 电子科技大学, 2021. doi: 10.27005/d.cnki.gdzku.2021.002538.

    LV Hongliang. Synchronization analysis and verification of arbitrary waveform generator module based on DAC using JESD204B interface[D]. [Master dissertation], University of Electronic Science and Technology of China, 2021. doi: 10.27005/d.cnki.gdzku.2021.002538.
    [10]
    符献杰. 10GSPS双通道任意波形合成模块硬件设计与实现[D]. [硕士论文], 电子科技大学, 2022. doi: 10.27005/d.cnki.gdzku.2022.002972.

    FU Xianjie. Hardware design and implementation of dual channel arbitrary waveform synthesizer with 10GSPS[D]. [Master dissertation], University of Electronic Science and Technology of China, 2022. doi: 10.27005/d.cnki.gdzku.2022.002972.
    [11]
    赵贺, 张鹏, 杨志群, 等. 多调制格式兼容的空间激光高速通信调制仿真与实验研究[J]. 中国激光, 2022, 49(7): 0706004. doi: 10.3788/CJL202149.0706004.

    ZHAO He, ZHANG Peng, YANG Zhiqun, et al. Simulation and experimental research of multimodulation format compatible space laser high-speed communication modulation[J]. Chinese Journal of Lasers, 2022, 49(7): 0706004. doi: 10.3788/CJL202149.0706004.
    [12]
    高铎瑞, 谢壮, 马榕, 等. 卫星激光通信发展现状与趋势分析(特邀)[J]. 光子学报, 2021, 50(4): 0406001. doi: 10.3788/gzxb20215004.0406001.

    GAO Duorui, XIE Zhuang, MA Rong, et al. Development current status and trend analysis of satellite laser communication (Invited)[J]. Acta Photonica Sinica, 2021, 50(4): 0406001. doi: 10.3788/gzxb20215004.0406001.
    [13]
    李宗霖. 一种新型高精度DAC的研究与设计[D]. [硕士论文], 电子科技大学, 2022. doi: 10.27005/d.cnki.gdzku.2022.002996.

    LI Zonglin. Research and design of a novel high precision DAC[D]. [Master dissertation], University of Electronic Science and Technology of China, 2022. doi: 10.27005/d.cnki.gdzku.2022.002996.
    [14]
    Xilinx. UltraScale architecture GTY transceivers[EB/OL]. http://docs.xilinx.com/v/u/en-US/ug578-ultrascale-gty-transceivers, 2021.
    [15]
    GEORGIADIS A. Gain, phase imbalance, and phase noise effects on error vector magnitude[J]. IEEE Transactions on Vehicular Technology, 2004, 53(2): 443–449. doi: 10.1109/TVT.2004.823477.
    [16]
    TAN Xiaoheng and LI Tengjiao. EVM simulation and analysis in digital transmitter[J]. The Journal of China Universities of Posts and Telecommunications, 2009, 16(6): 43–48. doi: 10.1016/S1005-8885(08)60287-3.
    [17]
    Xilinx. UltraScale architecture GTH transceivers[EB/OL]. http://docs.xilinx.com/v/u/en-US/ug576-ultrascale-gth-transceivers, 2021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views (233) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return