Advanced Search
Turn off MathJax
Article Contents
HOU Xiaoling, TIAN Zhuoli, WANG Jianbang, WANG Lihua, LI Jiang, ZHANG Jichao, LIU Huajie. A DNA Origami Cryptography Scheme Based on Staple Folding[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT231434
Citation: HOU Xiaoling, TIAN Zhuoli, WANG Jianbang, WANG Lihua, LI Jiang, ZHANG Jichao, LIU Huajie. A DNA Origami Cryptography Scheme Based on Staple Folding[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT231434

A DNA Origami Cryptography Scheme Based on Staple Folding

doi: 10.11999/JEIT231434
Funds:  The National Key R&D Program of China (2020YFA0908900), Shanghai Pilot Program for Basic Research
  • Received Date: 2023-12-28
  • Rev Recd Date: 2024-07-16
  • Available Online: 2024-07-24
  • The DNA origami nanostructure encapsulates intricate sequence-folding information, presenting a novel avenue for exploiting cryptography with a vast key space. This paper introduces an encryption strategy that fully realizes the structure-based potential of DNA origami. In contrast to previous approach centered on the folding of DNA origami scaffold, an alternative methodology is introduced based on the nonlinear combination characteristics of staple ensembles. This approach aims to achieve a larger key space by exploring the inherent extensive folding diversity of staple. The key space computational model is delineated into three factors: the binding domain mode, cooperative folding, and independence of staples. These three factors respectively account for the intra-chain distribution, inter-chain arrangement diversity, and sequence specificity of staples. The combination of these factors effectively converts the folding diversity of DNA origami in per unit of geometric space into key space. This strategy represents a cryptography rooted in the principles of biomolecular thermodynamics, offering new possibilities for extending the application scenarios of information security.
  • loading
  • [1]
    ZHIRNOV V, ZADEGAN R M, SANDHU G S, et al. Nucleic acid memory[J]. Nature Materials, 2016, 15(4): 366–370. doi: 10.1038/nmat4594.
    [2]
    CEZE L, NIVALA J, and STRAUSS K. Molecular digital data storage using DNA[J]. Nature Reviews Genetics, 2019, 20(8): 456–466. doi: 10.1038/s41576-019-0125-3.
    [3]
    BENENSON Y, PAZ-ELIZUR T, ADAR R, et al. Programmable and autonomous computing machine made of biomolecules[J]. Nature, 2001, 414(6862): 430–434. doi: 10.1038/35106533.
    [4]
    王君珂, 印珏, 牛人杰, 等. DNA计算与DNA纳米技术[J]. 电子与信息学报, 2020, 42(6): 1313–1325. doi: 10.11999/JEIT190826.

    WANG Junke, YIN Jue, NIU Renjie, et al. DNA computing and DNA nanotechnology[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1313–1325. doi: 10.11999/JEIT190826.
    [5]
    PENCHOVSKY R and BREAKER R R. Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes[J]. Nature Biotechnology, 2005, 23(11): 1424–1433. doi: 10.1038/nbt1155.
    [6]
    QIAN Lulu and WINFREE E. Scaling up digital circuit computation with DNA strand displacement cascades[J]. Science, 2011, 332(6034): 1196–1201. doi: 10.1126/science.1200520.
    [7]
    殷志祥, 唐震, 张强, 等. 基于DNA折纸基底的与非门计算模型[J]. 电子与信息学报, 2020, 42(6): 1355–1364. doi: 10.11999/JEIT190825.

    YIN Zhixiang, TANG Zhen, ZHANG Qiang, et al. NAND gate computational model based on the DNA origami template[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1355–1364. doi: 10.11999/JEIT190825.
    [8]
    CLELLAND C T, RISCA V, and BANCROFT C. Hiding messages in DNA microdots[J]. Nature, 1999, 399(6736): 533–534. doi: 10.1038/21092.
    [9]
    JONOSKA N, PĂUN G, and ROZENBERG G. Aspects of Molecular Computing: Essays Dedicated to Tom Head on the Occasion of His 70th Birthday[M]. Berlin: Springer, 2004: 167–188. doi: 10.1007/b94864.
    [10]
    LEIER A, RICHTER C, BANZHAF W, et al. Cryptography with DNA binary strands[J]. Biosystems, 2000, 57(1): 13–22. doi: 10.1016/S0303-2647(00)00083-6.
    [11]
    LUSTGARTEN O, MOTIEI L, and MARGULIES D. User authorization at the molecular scale[J]. ChemPhysChem, 2017, 18(13): 1678–1687. doi: 10.1002/cphc.201700506.
    [12]
    NUMMELIN S, KOMMERI J, KOSTIAINEN M A, et al. Evolution of structural DNA nanotechnology[J]. Advanced Materials, 2018, 30(24): 1703721. doi: 10.1002/adma.201703721.
    [13]
    SEEMAN N C. Nucleic acid junctions and lattices[J]. Journal of Theoretical Biology, 1982, 99(2): 237–247. doi: 10.1016/0022-5193(82)90002-9.
    [14]
    FU T J and SEEMAN N C. DNA double-crossover molecules[J]. Biochemistry, 1993, 32(13): 3211–3220. doi: 10.1021/bi00064a003.
    [15]
    LABEAN T H, YAN Hao, KOPATSCH J, et al. Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes[J]. Journal of the American Chemical Society, 2000, 122(9): 1848–1860. doi: 10.1021/ja993393e.
    [16]
    REISHUS D, SHAW B, BRUN Y, et al. Self-assembly of DNA double-double crossover complexes into high-density, doubly connected, planar structures[J]. Journal of the American Chemical Society, 2005, 127(50): 17590–17591. doi: 10.1021/ja0557177.
    [17]
    KE Yonggang, LIU Yan, ZHANG Junping, et al. A study of DNA tube formation mechanisms using 4-, 8-, and 12-Helix DNA nanostructures[J]. Journal of the American Chemical Society, 2006, 128(13): 4414–4421. doi: 10.1021/ja058145z.
    [18]
    ROTHEMUND P W K. Folding DNA to create nanoscale shapes and patterns[J]. Nature, 2006, 440(7082): 297–302. doi: 10.1038/nature04586.
    [19]
    OBER M F, BAPTIST A, WASSERMANN L, et al. In situ small-angle X-ray scattering reveals strong condensation of DNA origami during silicification[J]. Nature Communications, 2022, 13(1): 5668. doi: 10.1038/s41467-022-33083-5.
    [20]
    DAI Xinpei, CHEN Xiaoliang, JING Xinxin, et al. DNA origami-encoded integration of heterostructures[J]. Angewandte Chemie International Edition, 2022, 61(11): e202114190. doi: 10.1002/anie.202114190.
    [21]
    ZHAO Yumeng, ZHANG Chao, YANG Linlin, et al. Programmable and site-specific patterning on DNA origami templates with heterogeneous condensation of silver and silica[J]. Small, 2021, 17(47): 2103877. doi: 10.1002/smll.202103877.
    [22]
    HANNEWALD N, WINTERWERBER P, ZECHEL S, et al. DNA origami meets polymers: A powerful tool for the design of defined nanostructures[J]. Angewandte Chemie International Edition, 2021, 60(12): 6218–6229. doi: 10.1002/anie.202005907.
    [23]
    ARYAL B R, RANASINGHE D R, PANG Chao, et al. Annealing of polymer-encased nanorods on DNA origami forming metal–semiconductor nanowires: Implications for nanoelectronics[J]. ACS Applied Nano Materials, 2021, 4(9): 9094–9103. doi: 10.1021/acsanm.1c01682.
    [24]
    MADSEN M, BAKKE M R, GUDNASON D A, et al. A single molecule polyphenylene-vinylene photonic wire[J]. ACS Nano, 2021, 15(6): 9404–9411. doi: 10.1021/acsnano.0c10922.
    [25]
    YANG Yunqi, LU Qinyi, HUANG Chaomin, et al. Programmable site-specific functionalization of DNA origami with polynucleotide brushes[J]. Angewandte Chemie International Edition, 2021, 60(43): 23241–23247. doi: 10.1002/anie.202107829.
    [26]
    KAHN J S, XIONG Yan, HUANG J, et al. Cascaded enzyme reactions over a three-dimensional, wireframe DNA origami scaffold[J]. JACS Au, 2022, 2(2): 357–366. doi: 10.1021/jacsau.1c00387.
    [27]
    WANG S T, MINEVICH B, LIU Jianfang, et al. Designed and biologically active protein lattices[J]. Nature Communications, 2021, 12(1): 3702. doi: 10.1038/s41467-021-23966-4.
    [28]
    ZHAO Shuai, TIAN Run, WU Jun, et al. A DNA origami-based aptamer nanoarray for potent and reversible anticoagulation in hemodialysis[J]. Nature Communications, 2021, 12(1): 358. doi: 10.1038/s41467-020-20638-7.
    [29]
    孙彤, 刘文静, 张萍, 等. 基于DNA折纸的单个链霉亲和素分子的原子力显微术高分辨成像[J]. 核技术, 2019, 42(4): 040501. doi: 10.11889/j.0253-3219.2019.hjs.42.040501.

    SUN Tong, LIU Wenjing, ZHANG Ping, et al. High-resolution imaging of single-molecule streptavidin using atomic force microscopy based on DNA origami[J]. Nuclear Techniques, 2019, 42(4): 040501. doi: 10.11889/j.0253-3219.2019.hjs.42.040501.
    [30]
    YE Jingjing, AFTENIEVA O, BAYRAK T, et al. Complex metal nanostructures with programmable shapes from simple DNA building blocks[J]. Advanced Materials, 2021, 33(29): 2100381. doi: 10.1002/adma.202100381.
    [31]
    RYSSY J, NATARAJAN A K, WANG Jinhua, et al. Light-responsive dynamic DNA-origami-based plasmonic assemblies[J]. Angewandte Chemie, 2021, 133(11): 5923–5927. doi: 10.1002/ange.202014963.
    [32]
    MA Yuxuan, LU Zhangwei, JIA Bin, et al. DNA origami as a nanomedicine for targeted rheumatoid arthritis therapy through reactive oxygen species and nitric oxide scavenging[J]. ACS Nano, 2022, 16(8): 12520–12531. doi: 10.1021/acsnano.2c03991.
    [33]
    COMBERLATO A, KOGA M M, NÜSSING S, et al. Spatially controlled activation of toll-like receptor 9 with DNA-based nanomaterials[J]. Nano Letters, 2022, 22(6): 2506–2513. doi: 10.1021/acs.nanolett.2c00275.
    [34]
    KNAPPE G A, WAMHOFF E C, READ B J, et al. In situ covalent functionalization of DNA origami virus-like particles[J]. ACS Nano, 2021, 15(9): 14316–14322. doi: 10.1021/acsnano.1c03158.
    [35]
    CHATTERJEE G, DALCHAU N, MUSCAT R A, et al. A spatially localized architecture for fast and modular DNA computing[J]. Nature Nanotechnology, 2017, 12(9): 920–927. doi: 10.1038/nnano.2017.127.
    [36]
    THUBAGERE A J, LI Wei, JOHNSON R F, et al. A cargo-sorting DNA robot[J]. Science, 2017, 357(6356): eaan6558. doi: 10.1126/science.aan6558.
    [37]
    LIU Fengsong, LI Na, SHANG Yingxu, et al. A DNA-based plasmonic nanodevice for cascade signal amplification[J]. Angewandte Chemie International Edition, 2022, 61(22): e202114706. doi: 10.1002/anie.202114706.
    [38]
    ZHANG Yinan, WANG Fei, CHAO Jie, et al. DNA origami cryptography for secure communication[J]. Nature Communications, 2019, 10(1): 5469. doi: 10.1038/s41467-019-13517-3.
    [39]
    STALLINGS W. The advanced encryption standard[J]. Cryptologia, 2002, 26(3): 165–188. doi: 10.1080/0161-110291890876.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (14) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return