Advanced Search
Volume 46 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
LIU Jianshe, ZHU Guangping, YIN Jingwei, CHEN Wenjian, SUN Hui. Passive Pulse Source Ranging Using De-dispersion Transform of Power Spectral Density[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3592-3601. doi: 10.11999/JEIT231408
Citation: LIU Jianshe, ZHU Guangping, YIN Jingwei, CHEN Wenjian, SUN Hui. Passive Pulse Source Ranging Using De-dispersion Transform of Power Spectral Density[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3592-3601. doi: 10.11999/JEIT231408

Passive Pulse Source Ranging Using De-dispersion Transform of Power Spectral Density

doi: 10.11999/JEIT231408
Funds:  The National Key Research and Development Program of China (2021YFC2801200)
  • Received Date: 2023-12-22
  • Rev Recd Date: 2024-07-04
  • Available Online: 2024-08-02
  • Publish Date: 2024-09-26
  • The low-frequency sound propagating in the shallow water has the multi-mode characteristic and dispersion effect. The de-dispersion transform of signal frequency spectrum can eliminate the dispersion effect to achieve passive ranging. Focusing on the multi-value problem of the de-dispersion transform of frequency spectrum, a passive ranging method based on the De-Dispersion Transform of Power Spectral Density (PSD-DDT) is proposed. First, the field model KRAKEN is used to calculate the horizontal wavenumbers of each normal mode. Next, given the approximate range of waveguide invariant in the shallow water, the dispersion constant between any two modes is estimated. Then, the power spectral density that retains the modal interference term is subjected to the de-dispersion transform. Finally, the estimated value of the source distance is the ratio of the independent variable corresponding to the maximum amplitude of PSD-DDT to the dispersion constant. In addition, when the waveguide parameters are unknown, PSD-DDT is performed separately on the measured source and the guided source, and the distance is determined by the ratio of the independent variables. This condition does not need to calculate the dispersion constant. The effectiveness of PSD-DDT is verified through numerical simulation and sea trial. The effects of waveguide invariant, mode order, and signal-to-noise ratio on the ranging results are analyzed. Based on the trial data in the Northern Yellow Sea of China, compared with the DDT results, the ranging error of PSD-DDT has decreased by about 49.2%, The relative error within a range of 35 km under the best waveguide invariant is approximately 2.55% with high ranging accuracy.
  • loading
  • [1]
    FERREIRA B M, GRAÇA P A, ALVES J C, et al. Single receiver underwater localization of an unsynchronized periodic acoustic beacon using synthetic baseline[J]. IEEE Journal of Oceanic Engineering, 2023, 48(4): 1112–1126. doi: 10.1109/JOE.2023.3275611.
    [2]
    DE MARCO R, DI NARDO F, LUCCHETTI A, et al. The development of a low-cost hydrophone for passive acoustic monitoring of dolphin’s vocalizations[J]. Remote Sensing, 2023, 15(7): 1946. doi: 10.3390/rs15071946.
    [3]
    LIU Wei, XU Guojun, CHENG Xinghua, et al. A novel finite difference scheme for normal mode models in underwater acoustics[J]. Journal of Marine Science and Engineering, 2023, 11(3): 553. doi: 10.3390/jmse11030553.
    [4]
    ALTAHER A S, ZHUANG Hanqi, IBRAHIM A K, et al. Detection and localization of goliath grouper using their low-frequency pulse sounds[J]. The Journal of the Acoustical Society of America, 2023, 153(4): 2190. doi: 10.1121/10.0017804.
    [5]
    HUNTER AKINS F, KUPERMAN W A. Range-coherent matched field processing for low signal-to-noise ratio localization[J]. The Journal of the Acoustical Society of America, 2021, 150(1): 270–280. doi: 10.1121/10.0005586.
    [6]
    BROWN M G. Time-warping in underwater acoustic waveguides[J]. The Journal of the Acoustical Society of America, 2020, 147(2): 898–910. doi: 10.1121/10.0000693.
    [7]
    BONNEL J, LE TOUZE G, NICOLAS B, et al. Automatic and passive whale localization in shallow water using gunshots[C]. Oceans 2008, Quebec City, Canada, 2008: 1–6. doi: 10.1109/OCEANS.2008.5151937.
    [8]
    李晓曼, 张明辉, 张海刚, 等. 一种基于模态匹配的浅海波导中宽带脉冲声源的被动测距方法[J]. 物理学报, 2017, 66(9): 094302. doi: 10.7498/aps.66.094302.

    LI Xiaoman, ZHANG Minghui, ZHANG Haigang, et al. A passive range method of broadband impulse source based on matched-mode processing[J]. Acta Physica Sinica, 2017, 66(9): 094302. doi: 10.7498/aps.66.094302.
    [9]
    LI Xiaoman, PIAO Shengchun, ZHANG Minghui, et al. A passive source location method in a shallow water waveguide with a single sensor based on Bayesian theory[J]. Sensors, 2019, 19(6): 1452. doi: 10.3390/s19061452.
    [10]
    BONNEL J, LIN Y T, ELEFTHERAKIS D, et al. Geoacoustic inversion on the New England Mud Patch using warping and dispersion curves of high-order modes[J]. The Journal of the Acoustical Society of America, 2018, 143(5): EL405–EL411. doi: 10.1121/1.5039769.
    [11]
    BONNEL J, THODE A, WRIGHT D, et al. Nonlinear time-warping made simple: A step-by-step tutorial on underwater acoustic modal separation with a single hydrophone[J]. The Journal of the Acoustical Society of America, 2020, 147(3): 1897–1926. doi: 10.1121/10.0000937.
    [12]
    ZHOU Shihong, QI Yubo, and REN Yun. Frequency invariability of acoustic field and passive source range estimation in shallow water[J]. Science China Physics, Mechanics and Astronomy, 2014, 57(2): 225–232. doi: 10.1007/s11433-013-5359-z.
    [13]
    戚聿波, 周士弘, 张仁和, 等. 一种基于β-warping变换算子的被动声源距离估计方法[J]. 物理学报, 2015, 64(7): 074301. doi: 10.7498/aps.64.074301.

    QI Yubo, ZHOU Shihong, ZHANG Renhe, et al. A passive source ranging method using the waveguide-invariant-warping operator[J]. Acta Physica Sinica, 2015, 64(7): 074301. doi: 10.7498/aps.64.074301.
    [14]
    王冬, 郭良浩, 刘建军, 等. 一种基于warping变换的浅海脉冲声源被动测距方法[J]. 物理学报, 2016, 65(10): 104302. doi: 10.7498/aps.65.104302.

    WANG Dong, GUO Lianghao, LIU Jianjun, et al. Passive impulsive source range estimation based on warping operator in shallow water[J]. Acta Physica Sinica, 2016, 65(10): 104302. doi: 10.7498/aps.65.104302.
    [15]
    孙凯, 高大治, 高德洋, 等. 多普勒频移和干涉谱联合的水声目标运动参数估计[J]. 声学学报, 2023, 48(1): 50–59. doi: 10.15949/j.cnki.0371-0025.2023.01.001.

    SUN Kai, GAO Dazhi, GAO Deyang, et al. Estimation of motion parameters of underwater acoustic targets by combining Doppler shift and interference spectrum[J]. Acta Acustica, 2023, 48(1): 50–59. doi: 10.15949/j.cnki.0371-0025.2023.01.001.
    [16]
    孟瑞洁, 周士弘, 戚聿波. 浅海中运动声源径向速度与距离的无源估计[J]. 声学学报, 2021, 46(6): 983–996. doi: 10.15949/j.cnki.0371-0025.2021.06.019.

    MENG Ruijie, ZHOU Shihong, and QI Yubo. Passive radial velocity and range estimation of a moving source in shallow water[J]. Acta Acustica, 2021, 46(6): 983–996. doi: 10.15949/j.cnki.0371-0025.2021.06.019.
    [17]
    WILCOX P D. A rapid signal processing technique to remove the effect of dispersion from guided wave signals[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50(4): 419–427. doi: 10.1109/TUFFC.2003.1197965.
    [18]
    GAO Dazhi, WANG Ning, and WANG Haozhong. A dedispersion transform for sound propagation in shallow water waveguide[J]. Journal of Computational Acoustics, 2010, 18(3): 245–257. doi: 10.1142/S0218396X10004188.
    [19]
    YANG Guangbing, LÜ Liangang, GAO Dazhi, et al. A dedispersion transform method for extracting the normal modes of a shallow water acoustic signal in the Pekeris waveguide[J]. Archives of Acoustics, 2015, 40(1): 11–18. doi: 10.1515/aoa-2015-0002.
    [20]
    胡春晖, 王好忠, 袁博涵, 等. 消频散阵不变量距离估计方法[J]. 声学学报, 2022, 47(3): 309–320. doi: 10.15949/j.cnki.0371-0025.2022.03.007.

    HU Chunhui, WANG Haozhong, YUAN Bohan, et al. Source ranging using the dispersionless array invariant[J]. Acta Acustica, 2022, 47(3): 309–320. doi: 10.15949/j.cnki.0371-0025.2022.03.007.
    [21]
    郭晓乐, 杨坤德, 马远良, 等. 一种基于简正波模态消频散变换的声源距离深度估计方法[J]. 物理学报, 2016, 65(21): 214302. doi: 10.7498/aps.65.214302.

    GUO Xiaole, YANG Kunde, MA Yuanliang, et al. A source range and depth estimation method based on modal dedispersion transform[J]. Acta Physica Sinica, 2016, 65(21): 214302. doi: 10.7498/aps.65.214302.
    [22]
    JENSEN F B, KUPERMAN W A, PORTER M B, et al. Computational Ocean Acoustics[M]. 2nd ed. New York: Springer, 2011: 337–341. doi: 10.1007/978-1-4419-8678-8.
    [23]
    SUN Kai, GAO Dazhi, ZHAO Xiaojing, et al. Estimation of target motion parameters from the tonal signals with a single hydrophone[J]. Sensors, 2023, 23(15): 6881. doi: 10.3390/s23156881.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article views (252) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return