Citation: | LIU Xiaodong, NING Yiting, DONG Fan, TANG Liwei, WANG Yuhao, WANG Jinyuan. Channel State Information Restoration and Positioning of massive Multiple Input Multiple Output Integrated Visible Light Communication and Sensing System[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2391-2400. doi: 10.11999/JEIT231389 |
[1] |
赵亚军, 郁光辉, 徐汉青. 6G移动通信网络: 愿景、挑战与关键技术[J]. 中国科学:信息科学, 2019, 49(8): 963–987. doi: 10.1360/N112019-00033.
ZHAO Yajun, YU Guanghui, and XU Hanqing. 6G mobile communication networks: Vision, challenges, and key technologies[J]. SCIENTIA SINICA Informationis, 2019, 49(8): 963–987. doi: 10.1360/N112019-00033.
|
[2] |
LIU Xiaodong, CHEN Zezong, WANG Yuhao, et al. BER analysis of NOMA-enabled visible light communication systems with different modulations[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11): 10807–10821. doi: 10.1109/TVT.2019.2938909.
|
[3] |
王玉皞, 曹凡, 邓震宇, 等. 可见光通信中LED非线性补偿和带宽拓展技术[J]. 光电工程, 2020, 47(3): 190671. doi: 10.12086/oee.2020.190671.
WANG Yuhao, CAO Fan, DENG Zhenyu, et al. LED nonlinearity compensation and bandwidth expansion techniques in visible light communication[J]. Opto-Electronic Engineering, 2020, 47(3): 190671. doi: 10.12086/oee.2020.190671.
|
[4] |
施剑阳, 牛文清, 徐增熠, 等. 面向6G的可见光通信关键技术[J]. 无线电通信技术, 2021, 47(6): 692–697. doi: 10.3969/j.issn.1003-3114.2021.06.003.
SHI Jianyang, NIU Wenqing, XU Zengyi, et al. Key technology of visible light communication towards 6G[J]. Radio Communications Technology, 2021, 47(6): 692–697. doi: 10.3969/j.issn.1003-3114.2021.06.003.
|
[5] |
MA Shuai, CAO Shiyu, LI Hang, et al. Waveform design and optimization for integrated visible light positioning and communication[J]. IEEE Transactions on Communications, 2023, 71(9): 5392–5407. doi: 10.1109/TCOMM.2023.3287536.
|
[6] |
朱蔓菁, 王玉皞, 刘晓东. 可见光通信中继技术研究[J]. 光通信研究, 2021(3): 64–71. doi: 10.13756/j.gtxyj.2021.03.014.
ZHU Manjing, WANG Yuhao, and LIU Xiaodong. Research on relay technology of visible light communication[J]. Study on Optical Communications, 2021(3): 64–71. doi: 10.13756/j.gtxyj.2021.03.014.
|
[7] |
LARSSON E G, EDFORS O, TUFVESSON F, et al. Massive MIMO for next generation wireless systems[J]. IEEE Communications Magazine, 2014, 52(2): 186–195. doi: 10.1109/MCOM.2014.6736761.
|
[8] |
HUSSEIN Y S, ALIAS M Y, and ABDULKAFI A A. On performance analysis of LS and MMSE for channel estimation in VLC systems[C]. 2016 IEEE 12th International Colloquium on Signal Processing & Its Applications (CSPA), Melaka, Malaysia, 2016: 204–209. doi: 10.1109/CSPA.2016.7515832.
|
[9] |
CHEN Xianyu and JIANG Ming. Enhanced Bayesian MMSE channel estimation for visible light communication[C]. 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 2016: 1–6. doi: 10.1109/PIMRC.2016.7794762.
|
[10] |
LIN Bangjiang, GHASSEMLOOY Z, XU Junxiang, et al. Experimental demonstration of compressive sensing-based channel estimation for MIMO-OFDM VLC[J]. IEEE Wireless Communications Letters, 2020, 9(7): 1027–1030. doi: 10.1109/LWC.2020.2979177.
|
[11] |
GAO Zhipeng, WANG Yuhao, LIU Xiaodong, et al. FFDNet-based channel estimation for massive MIMO visible light communication systems[J]. IEEE Wireless Communications Letters, 2020, 9(3): 340–343. doi: 10.1109/LWC.2019.2954511.
|
[12] |
PALITHARATHNA K W S, SURAWEERA H A, GODALIYADDA R I, et al. Neural network-based channel estimation and detection in spatial modulation VLC systems[J]. IEEE Communications Letters, 2022, 26(7): 1598–1602. doi: 10.1109/LCOMM.2022.3166221.
|
[13] |
HAO Xiaolong, SUN Wenjing, CHEN Jian, et al. Vertical measurable displacement approach for altitude accuracy improvement in 3D visible light positioning[J]. Optics Communications, 2021, 490: 126914. doi: 10.1016/j.optcom.2021.126914.
|
[14] |
ZHU Bingcheng, CHENG Julian, WANG Yongjin, et al. Three-dimensional VLC positioning based on angle difference of arrival with arbitrary tilting angle of receiver[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(1): 8–22. doi: 10.1109/JSAC.2017.2774435.
|
[15] |
SHEIKH S M, ASIF H M, RAAHEMIFAR K, et al. Time difference of arrival based indoor positioning system using visible light communication[J]. IEEE Access, 2021, 9: 52113–52124. doi: 10.1109/ACCESS.2021.3069793.
|
[16] |
ZHOU Yingjun, XU Yinfan, WANG Zhixin, et al. MIMO VLC positioning system based on LEDs utilizing diversity reception technology[C]. 2015 International Conference on Wireless Communications & Signal Processing (WCSP), Nanjing, China, 2015: 1–4. doi: 10.1109/WCSP.2015.7341211.
|
[17] |
OH S H and KIM J G. VLC positioning by DNN via WkNN in indoor environment[C]. 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN), Barcelona, Spain, 2022: 450–453. doi: 10.1109/ICUFN55119.2022.9829653.
|
[18] |
CHENG Yue, SHAO Jianhua, and WU Ruiqi. Compressive sensing optimization algorithm for indoor visible light 3D positioning[J]. Journal of Physics:Conference Series, 2023, 2617: 012002. doi: 10.1088/1742-6596/2617/1/012002.
|
[19] |
ZHENG Xuanyu, LIU An, and LAU V. Joint channel and location estimation of massive MIMO system with phase noise[J]. IEEE Transactions on Signal Processing, 2020, 68: 2598–2612. doi: 10.1109/TSP.2020.2986551.
|
[20] |
WEI Tiankuo, LIU Sicong, and DU Xiaojiang. Visible light integrated positioning and communication: A multi-task federated learning framework[J]. IEEE Transactions on Mobile Computing, 2023, 22(12): 7086–7103. doi: 10.1109/TMC.2022.3207164.
|
[21] |
WEI D and LIU Han. Stereo matching algorithm based on CGAN[C]. 2021 China Automation Congress (CAC), Beijing, China, 2021: 5607–5612. doi: 10.1109/CAC53003.2021.9728455.
|
[22] |
KARIM F, MAJUMDAR S, DARABI H, et al. LSTM fully convolutional networks for time series classification[J]. IEEE Access, 2018, 6: 1662–1669. doi: 10.1109/ACCESS.2017.2779939.
|