Advanced Search
Volume 46 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
PANG Xiaowei, JIANG Xu, LU Huabing, ZHAO Nan. An Overview of Novel Multi-access Techniques for Multi-dimensional Expanded 6G[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2323-2334. doi: 10.11999/JEIT231265
Citation: PANG Xiaowei, JIANG Xu, LU Huabing, ZHAO Nan. An Overview of Novel Multi-access Techniques for Multi-dimensional Expanded 6G[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2323-2334. doi: 10.11999/JEIT231265

An Overview of Novel Multi-access Techniques for Multi-dimensional Expanded 6G

doi: 10.11999/JEIT231265
Funds:  The National Key R&D Program of China (2020YFB1807002), The National Natural Science Foundation of China (62101091,62371087), Application and Fundamental Research Planning Project in Liaoning Province (2023TH2/101300197)
  • Received Date: 2023-11-15
  • Rev Recd Date: 2024-01-20
  • Available Online: 2024-02-21
  • Publish Date: 2024-06-30
  • With the evolution of mobile communication technology, the Sixth-Generation (6G) wireless networks will achieve a leap from the internet of things to the internet of intelligent things, meeting higher data demands and broader application scenarios. Novel multiple access technologies and multidimensional expansion techniques will jointly play a role in 6G, providing crucial support for building an efficient, intelligent, and reliable communication network to meet the diverse demands of future communications. Therefore, this review paper aims to explore the application potentials of novel multiple access technologies in multidimensional expansion 6G communication networks. Firstly, it compares traditional multiple access technologies with potential novel multiple access technologies in 6G, with a focus on the advantages of non-orthogonal multiple access technology in improving spectral efficiency and system capacity. Then, it provides a detailed introduction to the advantages and functions of multidimensional expansion technologies such as satellite communication, Unmanned Aerial Vehicle (UAV), and Intelligent Reflecting Surface (IRS) in 6G scenarios. Furthermore, the advantages and collaborative applications of novel multiple access technologies in conjunction with satellite communication, UAV, and IRS are discussed. Finally, the paper discusses key technological challenges in a novel multi-dimensional extension network based on new multiple access technologies, including large-scale multiple-input-multiple-output, terahertz technology, integrated sensing, communication, and computing, user information security, and imperfect Channel State Information (CSI) estimation, while also providing prospects for new coding technologies, artificial intelligence and machine learning.
  • loading
  • [1]
    邓伟, 郝悦, 胡南, 等. 5G网络演进与6G展望[J]. 信息通信技术, 2021, 15(5): 8–14. doi: 10.3969/j.issn.1674-1285.2021.05.002.

    DENG Wei, HAO Yue, HU Nan, et al. 5G network evolution and 6G prospect[J]. Information and Communications Technologies, 2021, 15(5): 8–14. doi: 10.3969/j.issn.1674-1285.2021.05.002.
    [2]
    张平, 牛凯, 田辉, 等. 6G移动通信技术展望[J]. 通信学报, 2019, 40(1): 141–148. doi: 10.11959/j.issn.1000-436x.2019022.

    ZHANG Ping, NIU Kai, TIAN Hui, et al. Technology prospect of 6G mobile communications[J]. Journal on Communications, 2019, 40(1): 141–148. doi: 10.11959/j.issn.1000-436x.2019022.
    [3]
    赛迪智库无线管理研究所. 6G概念及愿景白皮书[N]. 中国计算机报, 2020-05-11(008). doi: 10.28468/n.cnki.njsjb.2020.000054.
    [4]
    YOU Xiaohu, WANG Chengxiang, HUANG Jie, et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64(1): 110301. doi: 10.1007/s11432-020-2955-6.
    [5]
    GUAN Yueshi, WANG Yijie, BIAN Qing, et al. High-efficiency self-driven circuit with parallel branch for high frequency converters[J]. IEEE Transactions on Power Electronics, 2018, 33(2): 926–931. doi: 10.1109/TPEL.2017.2724545.
    [6]
    赵亚军, 郁光辉, 徐汉青. 6G移动通信网络: 愿景、挑战与关键技术[J]. 中国科学:信息科学, 2019, 49(8): 963–987. doi: 10.1360/N112019-00033.

    ZHAO Yajun, YU Guanghui, and XU Hanqing. 6G mobile communication networks: Vision, challenges, and key technologies[J]. Scientia Sinica Informationis, 2019, 49(8): 963–987. doi: 10.1360/N112019-00033.
    [7]
    施建锋, 杨照辉, 黄诺, 等. 面向6G的用户为中心网络研究综述[J]. 电子与信息学报, 2023, 45(5): 1873–1887. doi: 10.11999/JEIT220242.

    SHI Jianfeng, YANG Zhaohui, HUANG Nuo, et al. A survey on user-centric networks for 6G[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1873–1887. doi: 10.11999/JEIT220242.
    [8]
    张海君, 陈安琪, 李亚博, 等. 6G移动网络关键技术[J]. 通信学报, 2022, 43(7): 189–202. doi: 10.11959/j.issn.1000-436x.2022140.

    ZHANG Haijun, CHEN Anqi, LI Yabo, et al. Key technologies of 6G mobile network[J]. Journal on Communications, 2022, 43(7): 189–202. doi: 10.11959/j.issn.1000-436x.2022140.
    [9]
    毕奇, 梁林, 杨姗, 等. 面向5G的非正交多址接入技术[J]. 电信科学, 2015, 31(5): 14–21. doi: 10.11959/j.issn.1000-0801.2015137.

    BI Qi, LIANG Lin, YANG Shan, et al. Non-orthogonal multiple access technology for 5G systems[J]. Telecommunications Science, 2015, 31(5): 14–21. doi: 10.11959/j.issn.1000-0801.2015137.
    [10]
    董园园, 巩彩红, 李华, 等. 面向6G的非正交多址接入关键技术[J]. 移动通信, 2020, 44(6): 57–62,69. doi: 10.3969/j.issn.1006-1010.2020.06.009.

    DONG Yuanyuan, GONG Caihong, LI Hua, et al. The key technologies of non-orthogonal multiple access for 6G systems[J]. Mobile Communications, 2020, 44(6): 57–62,69. doi: 10.3969/j.issn.1006-1010.2020.06.009.
    [11]
    DING Zhiguo, ADACHI F, and POOR H V. The application of MIMO to non-orthogonal multiple access[J]. IEEE Transactions on Wireless Communications, 2016, 15(1): 537–552. doi: 10.1109/TWC.2015.2475746.
    [12]
    FANG Xinran, FENG Wei, WEI Te, et al. 5G embraces satellites for 6G ubiquitous IoT: Basic models for integrated satellite terrestrial networks[J]. IEEE Internet of Things Journal, 2021, 8(18): 14399–14417. doi: 10.1109/JIOT.2021.3068596.
    [13]
    张平, 张建华, 戚琦, 等. Ubiquitous-X: 构建未来6G网络[J]. 中国科学:信息科学, 2020, 50(6): 913–930. doi: 10.1360/SSI-2020-0068.

    ZHANG Ping, ZHANG Jianhua, QI Qi, et al. Ubiquitous-X: Constructing the future 6G networks[J]. Scientia Sinica Informationis, 2020, 50(6): 913–930. doi: 10.1360/SSI-2020-0068.
    [14]
    ZHAO Yue, XIE Lei, CHEN Huifang, et al. Ergodic channel capacity analysis of downlink in the hybrid satellite-terrestrial cooperative system[J]. Wireless Personal Communications, 2017, 96(3): 3799–3815. doi: 10.1007/s11277-017-4207-2.
    [15]
    陈新颖, 盛敏, 李博, 等. 面向6G的无人机通信综述[J]. 电子与信息学报, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789.

    CHEN Xinying, SHENG Min, LI Bo, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics & Information Technology, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789.
    [16]
    WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/mcom.001.1900107.
    [17]
    WONG C Y, CHENG R S, LATAIEF K B, et al. Multiuser OFDM with adaptive subcarrier, bit, and power allocation[J]. IEEE Journal on Selected Areas in Communications, 1999, 17(10): 1747–1758. doi: 10.1109/49.793310.
    [18]
    STEELE R and HANZO L. Mobile Radio Communications: Second and Third Generation Cellular and WATM Systems[M]. 2nd ed. New York: Wiley, 1999.
    [19]
    GILHOUSEN K S, JACOBS I M, PADOVANI R, et al. On the capacity of a cellular CDMA system[J]. IEEE Transactions on Vehicular Technology, 1991, 40(2): 303–312. doi: 10.1109/25.289411.
    [20]
    LI Junyi, WU Xinzhou, and LAROIA R. OFDMA Mobile Broadband Communications: A Systems Approach[M]. Cambridge, UK: Cambridge University Press, 2013.
    [21]
    DING Zhiguo, LEI Xianfu, KARAGIANNIDIS G K, et al. A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(10): 2181–2195. doi: 10.1109/JSAC.2017.2725519.
    [22]
    YU Wei, RHEE W, BOYD S, et al. Iterative water-filling for Gaussian vector multiple access channels[C]. 2001 IEEE International Symposium on Information Theory, Washington, USA, 2001: 322. doi: 10.1109/ISIT.2001.936185.
    [23]
    DAI Linglong, WANG Bichai, DING Zhiguo, et al. A survey of non-orthogonal multiple access for 5G[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 2294–2323. doi: 10.1109/COMST.2018.2835558.
    [24]
    HOSHYAR R, WATHAN F P, and TAFAZOLLI R. Novel low-density signature for synchronous CDMA systems over AWGN channel[J]. IEEE Transactions on Signal Processing, 2008, 56(4): 1616–1626. doi: 10.1109/TSP.2007.909320.
    [25]
    ZHANG Jiankang, CHEN Sheng, MU Xiaomin, et al. Evolutionary-algorithm-assisted joint channel estimation and turbo multiuser detection/decoding for OFDM/SDMA[J]. IEEE Transactions on Vehicular Technology, 2014, 63(3): 1204–1222. doi: 10.1109/TVT.2013.2283069.
    [26]
    CLERCKX B, JOUDEH H, HAO Chenxi, et al. Rate splitting for MIMO wireless networks: A promising PHY-layer strategy for LTE evolution[J]. IEEE Communications Magazine, 2016, 54(5): 98–105. doi: 10.1109/mcom.2016.7470942.
    [27]
    CLERCKX B, MAO Yijie, SCHOBER R, et al. Rate-splitting unifying SDMA, OMA, NOMA, and multicasting in MISO broadcast channel: A simple two-user rate analysis[J]. IEEE Wireless Communications Letters, 2020, 9(3): 349–353. doi: 10.1109/LWC.2019.2954518.
    [28]
    MAO Yijie, DIZDAR O, CLERCKX B, et al. Rate-splitting multiple access: Fundamentals, survey, and future research trends[J]. IEEE Communications Surveys & Tutorials, 2022, 24(4): 2073–2126. doi: 10.1109/COMST.2022.3191937.
    [29]
    WU Yongpeng, GAO Xiqi, ZHOU Shidong, et al. Massive access for future wireless communication systems[J]. IEEE Wireless Communications, 2020, 27(4): 148–156. doi: 10.1109/MWC.001.1900494.
    [30]
    LIU Liang and YU Wei. Massive connectivity with massive MIMO—Part I: Device activity detection and channel estimation[J]. IEEE Transactions on Signal Processing, 2018, 66(11): 2933–2946. doi: 10.1109/TSP.2018.2818082.
    [31]
    WONG K K, NEW W K, HAO Xu, et al. Fluid antenna system—Part I: Preliminaries[J]. IEEE Communications Letters, 2023, 27(8): 1919–1923. doi: 10.1109/LCOMM.2023.3284320.
    [32]
    WONG K K and TONG K F. Fluid antenna multiple access[J]. IEEE Transactions on Wireless Communications, 2022, 21(7): 4801–4815. doi: 10.1109/TWC.2021.3133410.
    [33]
    WU Zidong and DAI Linglong. Multiple access for near-field communications: SDMA or LDMA?[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(6): 1918–1935. doi: 10.1109/JSAC.2023.3275616.
    [34]
    GIORDANI M and ZORZI M. Non-terrestrial networks in the 6G era: Challenges and opportunities[J]. IEEE Network, 2021, 35(2): 244–251. doi: 10.1109/MNET.011.2000493.
    [35]
    CHU Jianhang, CHEN Xiaoming, ZHONG Caijun, et al. Robust design for NOMA-based multibeam LEO satellite internet of things[J]. IEEE Internet of Things Journal, 2021, 8(3): 1959–1970. doi: 10.1109/JIOT.2020.3015995.
    [36]
    WANG Ningyuan, LI Feng, CHEN Dong, et al. NOMA-based energy-efficiency optimization for UAV enabled space-air-ground integrated relay networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 4129–4141. doi: 10.1109/TVT.2022.3151369.
    [37]
    MEI Weidong and ZHANG Rui. Uplink cooperative NOMA for cellular-connected UAV[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(3): 644–656. doi: 10.1109/JSTSP.2019.2899208.
    [38]
    JAAFAR W, NASER S, MUHAIDAT S, et al. On the downlink performance of RSMA-based UAV communications[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 16258–16263. doi: 10.1109/TVT.2020.3037657.
    [39]
    XU Yu, ZHANG Tiankui, ZOU Yixuan, et al. Reconfigurable intelligence surface aided UAV-MEC systems with NOMA[J]. IEEE Communications Letters, 2022, 26(9): 2121–2125. doi: 10.1109/LCOMM.2022.3183285.
    [40]
    SU Yuhua, PANG Xiaowei, LU Weidang, et al. Joint location and beamforming optimization for STAR-RIS aided NOMA-UAV networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(8): 11023–11028. doi: 10.1109/TVT.2023.3261324.
    [41]
    ZHAO Nan, PANG Xiaowei, LI Zan, et al. Joint trajectory and precoding optimization for UAV-assisted NOMA networks[J]. IEEE Transactions on Communications, 2019, 67(5): 3723–3735. doi: 10.1109/TCOMM.2019.2895831.
    [42]
    PANG Xiaowei, ZHAO Nan, TANG Jie, et al. IRS-assisted secure UAV transmission via joint trajectory and beamforming design[J]. IEEE Transactions on Communications, 2022, 70(2): 1140–1152. doi: 10.1109/TCOMM.2021.3136563.
    [43]
    中国通信学会. 通感算一体化网络前沿报告(2021年)[R]. 2022.

    China Institute of Communication. Advanced report on integrated communication, sensing, and computing networks (2021)[R]. 2022.
    [44]
    LI Qiang, XU Dongyang, NAVAIE K, et al. Covert and secure communications in NOMA networks with internal eavesdropping[J]. IEEE Wireless Communications Letters, 2023, 12(12): 2178–2182. doi: 10.1109/LWC.2023.3312689.
    [45]
    IMT-2030(6G)推进组. 无线AI技术研究报告[R]. 2021. IMT-2030(6G) Promotion Group. Wireless AI Technical Study Report [R]. 2021.

    IMT-2030(6G) Promotion Group. Wireless AI Technical Study Report [R]. 2021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (928) PDF downloads(174) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return