Advanced Search
Volume 46 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
WANG Ji, LI Zilong, XIAO Jian, LI Huanzhe, XIE Wenwu, YU Chao. Research on Multi-User Detection Algorithm for Non-Orthogonal Multiple Access Short Message Based on Low Complexity Adder Network[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2409-2417. doi: 10.11999/JEIT231186
Citation: WANG Ji, LI Zilong, XIAO Jian, LI Huanzhe, XIE Wenwu, YU Chao. Research on Multi-User Detection Algorithm for Non-Orthogonal Multiple Access Short Message Based on Low Complexity Adder Network[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2409-2417. doi: 10.11999/JEIT231186

Research on Multi-User Detection Algorithm for Non-Orthogonal Multiple Access Short Message Based on Low Complexity Adder Network

doi: 10.11999/JEIT231186
Funds:  The National Natural Science Foundation of China (62101205, 62372070), The Key Research and Development Program of Hubei Province (2023BAB061), The Research and Innovation Projects in HunanProvince (QL20230275, CX20231220), Hunan Provincial Natural Science Foundation (2023JJ50045), Hunan Provincial College Students’ Innovation and Entrepreneurship Projects (S202310543040)
  • Received Date: 2023-10-31
  • Rev Recd Date: 2024-03-15
  • Available Online: 2024-04-01
  • Publish Date: 2024-06-30
  • A joint constellation trace diagram and deep learning-based blind modulation detection scheme is proposed for Non-Orthogonal Multiple Access (NOMA) systems, which can avoid the required expensive signaling overhead in successive interference cancellation algorithms, especially for NOMA-based short packet transmission. Considering the high computational complexity and energy consumption for communication equipment in the deployment of neural network, the original convolutional network is replaced by the adder network. The modulation detection accuracy, computing delay and energy consumption are fully compared for two kinds of network architectures. Meanwhile, time-domain oversampling technology is used to improve the recognition rate under low signal-to-noise ratio. Finally, the influence of power allocation and data packet length on detection performance is analyzed and verified.
  • loading
  • [1]
    ELGARHY O, REGGIANI L, ALAM M M, et al. Energy efficiency and latency optimization for IoT URLLC and mMTC use cases[J]. IEEE Access, 2024, 12: 23132–23148. doi: 10.1109/ACCESS.2024.3364349.
    [2]
    SHAHAB M B, ABBAS R, SHIRVANIMOGHADDAM M, et al. Grant-free non-orthogonal multiple access for IoT: A survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(3): 1805–1838. doi: 10.1109/COMST.2020.2996032.
    [3]
    SONG Ge, FANG Xiaojie, and SHA Xuejun. The extended hybrid carrier-based multiple access technology for high mobility scenarios[J]. China Communications, 2024, 21(1): 53–68. doi: 10.23919/JCC.fa.2023-0352.202401.
    [4]
    张宏莉, 韩玲, 王星妍. 5G非正交多址关键技术研究和性能评估[J]. 信息通信技术与政策, 2022, 49(6): 85–90. doi: 10.12267/j.issn.2096-5931.2022.06.015.

    ZHANG Hongli, HAN Ling, and WANG Xingyan. Study on 5G non-orthogonal multiple access technology & performance evaluation[J]. Information and Communications Technology and Policy, 2022, 49(6): 85–90. doi: 10.12267/j.issn.2096-5931.2022.06.015.
    [5]
    DING Zhiguo, LEI Xianfu, KARAGIANNIDIS G K, et al. A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(10): 2181–2195. doi: 10.1109/JSAC.2017.2725519.
    [6]
    DAI Linglong, WANG Bichai, YUAN Yifei, et al. Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends[J]. IEEE Communications Magazine, 2015, 53(9): 74–81. doi: 10.1109/MCOM.2015.7263349.
    [7]
    SAITO Y, KISHIYAMA Y, BENJEBBOUR A, et al. Non-Orthogonal Multiple Access (NOMA) for cellular future radio access[C]. 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), Dresden, Germany, 2013: 1–5. doi: 10.1109/VTCSpring.2013.6692652.
    [8]
    MALI M D and CHORAGE S S. Spectrally efficient Multiple Input Multiple Output (MIMO) Non-Orthogonal Multiple Access (NOMA) technique for future wireless communication[C]. 2022 2nd Asian Conference on Innovation in Technology (ASIANCON), Ravet, India, 2022: 1–5. doi: 10.1109/ASIANCON55314.2022.9908664.
    [9]
    蔡昕. 单通道时频混叠数字通信信号盲分离方法研究[D]. [博士论文], 国防科技大学, 2021. doi: 10.27052/d.cnki.gzjgu.2021.000088.

    CAI Xin. Researches on blind separation of single channel time-frequency overlapped digital communication signals[D]. [Ph. D. dissertation], National University of Defense Technology, 2021. doi: 10.27052/d.cnki.gzjgu.2021.000088.
    [10]
    WEI Wen and MENDEL J M. Maximum-likelihood classification for digital amplitude-phase modulations[J]. IEEE Transactions on Communications, 2000, 48(2): 189–193. doi: 10.1109/26.823550.
    [11]
    CHOI M, YOON D, and KIM J. Blind signal classification for non-orthogonal multiple access in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(10): 9722–9734. doi: 10.1109/TVT.2019.2932407.
    [12]
    LI Tao, LI Yongzhao, and DOBRE O A. Modulation classification based on fourth-order Cumulants of superposed signal in NOMA systems[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 2885–2897. doi: 10.1109/TIFS.2021.3068006.
    [13]
    ZHANG Ningbo, CHENG Kai, and KANG Guixia. A machine-learning-based blind detection on interference modulation order in NOMA systems[J]. IEEE Communications Letters, 2018, 22(12): 2463–2466. doi: 10.1109/LCOMM.2018.2874218.
    [14]
    LASELVA S. 人工智能在5G和6G网络中的应用[J]. 软件和集成电路, 2023(6): 8–9. doi: 10.19609/j.cnki.cn10-1339/tn.2023.06.022.

    LASELVA S. The application of artificial intelligence in 5G and 6G networks[J]. Software and Integrated Circuit, 2023(6): 8–9. doi: 10.19609/j.cnki.cn10-1339/tn.2023.06.022.
    [15]
    O’SHEA T J, ROY T, and CLANCY T C. Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 168–179. doi: 10.1109/JSTSP.2018.2797022.
    [16]
    HOU Changbo, LIU Guowei, TIAN Qiao, et al. Multisignal modulation classification using sliding window detection and complex convolutional network in frequency domain[J]. IEEE Internet of Things Journal, 2022, 9(19): 19438–19449. doi: 10.1109/JIOT.2022.3167107.
    [17]
    张思成, 林云, 涂涯, 等. 基于轻量级深度神经网络的电磁信号调制识别技术[J]. 通信学报, 2020, 41(11): 12–21. doi: 10.11959/j.issn.1000-436x.2020237.

    ZHANG Sicheng, LIN Yun, TU Ya, et al. Electromagnetic signal modulation recognition technology based on lightweight deep neural network[J]. Journal on Communications, 2020, 41(11): 12–21. doi: 10.11959/j.issn.1000-436x.2020237.
    [18]
    STRUBELL E, GANESH A, and MCCALLUM A. Energy and policy considerations for deep learning in NLP[C]. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 2019: 3645–3650. doi: 10.18653/v1/P19-1355.
    [19]
    CHEN Hanting, WANG Yunhe, XU Chunjing, et al. AdderNet: Do we really need multiplications in deep learning?[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 1465–1474. doi: 10.1109/CVPR42600.2020.00154.
    [20]
    王建新, 宋辉. 基于星座图的数字调制方式识别[J]. 通信学报, 2004, 25(6): 166–173. doi: 10.3321/j.issn:1000-436X.2004.06.023.

    WANG Jianxin and SONG Hui. Digital modulation recognition based on constellation diagram[J]. Journal on Communications, 2004, 25(6): 166–173. doi: 10.3321/j.issn:1000-436X.2004.06.023.
    [21]
    SHAFIQ M and GU Zhaoquan. Deep residual learning for image recognition: A survey[J]. Applied Sciences, 2022, 12(18): 8972. doi: 10.3390/app12188972.
    [22]
    OTAO N, KISHIYAMA Y, and HIGUCHI K. Performance of non-orthogonal access with SIC in cellular downlink using proportional fair-based resource allocation[C]. 2012 International Symposium on Wireless Communication Systems (ISWCS), Paris, France, 2012: 476–480. doi: 10.1109/ISWCS.2012.6328413.
    [23]
    崔荣涛, 李辉, 万坚, 等. 一种基于过采样的单通道MPSK信号盲分离算法[J]. 电子与信息学报, 2009, 31(3): 566–569. doi: 10.3724/SP.J.1146.2007.01792.

    CUI Rongtao, LI Hui, WAN Jian, et al. An over-sampling based blind separation algorithm of single channel MPSK signals[J]. Journal of Electronics & Information Technology, 2009, 31(3): 566–569. doi: 10.3724/SP.J.1146.2007.01792.
    [24]
    PENG Linning, ZHANG Junqing, LIU Ming, et al. Deep learning based RF fingerprint identification using differential constellation trace figure[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 1091–1095. doi: 10.1109/TVT.2019.2950670.
    [25]
    IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. The 32nd International Conference on Machine Learning, Lille, France, 2015: 448–456. doi: 10.5555/3045118.3045167.
    [26]
    LOSHCHILOV I and HUTTER F. SGDR: Stochastic gradient descent with warm restarts[C]. 5th International Conference on Learning Representations, Toulon, France, 2017. doi: 10.48550/arXiv.1608.03983.
    [27]
    HOROWITZ M. 1.1 Computing's energy problem (and what we can do about it)[C]. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, USA, 2014: 10–14. doi: 10.1109/ISSCC.2014.6757323.
    [28]
    施建锋, 杨照辉, 黄诺, 等. 面向6G的用户为中心网络研究综述[J]. 电子与信息学报, 2023, 45(5): 1873–1887. doi: 10.11999/ JEIT220242.

    SHI Jianfeng, YANG Zhaohui, HUANG Nuo, et al. A survey on user-centric networks for 6G[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1873–1887. doi: 10.11999/JEIT220242.
    [29]
    张海君, 陈安琪, 李亚博, 等. 6G移动网络关键技术[J]. 通信学报, 2022, 43(7): 189–202. doi: 10.11959/j.issn.1000-436x.2022140.

    ZHANG Haijun, CHEN Anqi, LI Yabo, et al. Key technologies of 6G mobile network[J]. Journal on Communications, 2022, 43(7): 189–202. doi: 10.11959/j.issn.1000-436x.2022140.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (228) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return