Citation: | WANG Ji, LI Zilong, XIAO Jian, LI Huanzhe, XIE Wenwu, YU Chao. Research on Multi-User Detection Algorithm for Non-Orthogonal Multiple Access Short Message Based on Low Complexity Adder Network[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2409-2417. doi: 10.11999/JEIT231186 |
[1] |
ELGARHY O, REGGIANI L, ALAM M M, et al. Energy efficiency and latency optimization for IoT URLLC and mMTC use cases[J]. IEEE Access, 2024, 12: 23132–23148. doi: 10.1109/ACCESS.2024.3364349.
|
[2] |
SHAHAB M B, ABBAS R, SHIRVANIMOGHADDAM M, et al. Grant-free non-orthogonal multiple access for IoT: A survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(3): 1805–1838. doi: 10.1109/COMST.2020.2996032.
|
[3] |
SONG Ge, FANG Xiaojie, and SHA Xuejun. The extended hybrid carrier-based multiple access technology for high mobility scenarios[J]. China Communications, 2024, 21(1): 53–68. doi: 10.23919/JCC.fa.2023-0352.202401.
|
[4] |
张宏莉, 韩玲, 王星妍. 5G非正交多址关键技术研究和性能评估[J]. 信息通信技术与政策, 2022, 49(6): 85–90. doi: 10.12267/j.issn.2096-5931.2022.06.015.
ZHANG Hongli, HAN Ling, and WANG Xingyan. Study on 5G non-orthogonal multiple access technology & performance evaluation[J]. Information and Communications Technology and Policy, 2022, 49(6): 85–90. doi: 10.12267/j.issn.2096-5931.2022.06.015.
|
[5] |
DING Zhiguo, LEI Xianfu, KARAGIANNIDIS G K, et al. A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(10): 2181–2195. doi: 10.1109/JSAC.2017.2725519.
|
[6] |
DAI Linglong, WANG Bichai, YUAN Yifei, et al. Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends[J]. IEEE Communications Magazine, 2015, 53(9): 74–81. doi: 10.1109/MCOM.2015.7263349.
|
[7] |
SAITO Y, KISHIYAMA Y, BENJEBBOUR A, et al. Non-Orthogonal Multiple Access (NOMA) for cellular future radio access[C]. 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), Dresden, Germany, 2013: 1–5. doi: 10.1109/VTCSpring.2013.6692652.
|
[8] |
MALI M D and CHORAGE S S. Spectrally efficient Multiple Input Multiple Output (MIMO) Non-Orthogonal Multiple Access (NOMA) technique for future wireless communication[C]. 2022 2nd Asian Conference on Innovation in Technology (ASIANCON), Ravet, India, 2022: 1–5. doi: 10.1109/ASIANCON55314.2022.9908664.
|
[9] |
蔡昕. 单通道时频混叠数字通信信号盲分离方法研究[D]. [博士论文], 国防科技大学, 2021. doi: 10.27052/d.cnki.gzjgu.2021.000088.
CAI Xin. Researches on blind separation of single channel time-frequency overlapped digital communication signals[D]. [Ph. D. dissertation], National University of Defense Technology, 2021. doi: 10.27052/d.cnki.gzjgu.2021.000088.
|
[10] |
WEI Wen and MENDEL J M. Maximum-likelihood classification for digital amplitude-phase modulations[J]. IEEE Transactions on Communications, 2000, 48(2): 189–193. doi: 10.1109/26.823550.
|
[11] |
CHOI M, YOON D, and KIM J. Blind signal classification for non-orthogonal multiple access in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(10): 9722–9734. doi: 10.1109/TVT.2019.2932407.
|
[12] |
LI Tao, LI Yongzhao, and DOBRE O A. Modulation classification based on fourth-order Cumulants of superposed signal in NOMA systems[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 2885–2897. doi: 10.1109/TIFS.2021.3068006.
|
[13] |
ZHANG Ningbo, CHENG Kai, and KANG Guixia. A machine-learning-based blind detection on interference modulation order in NOMA systems[J]. IEEE Communications Letters, 2018, 22(12): 2463–2466. doi: 10.1109/LCOMM.2018.2874218.
|
[14] |
LASELVA S. 人工智能在5G和6G网络中的应用[J]. 软件和集成电路, 2023(6): 8–9. doi: 10.19609/j.cnki.cn10-1339/tn.2023.06.022.
LASELVA S. The application of artificial intelligence in 5G and 6G networks[J]. Software and Integrated Circuit, 2023(6): 8–9. doi: 10.19609/j.cnki.cn10-1339/tn.2023.06.022.
|
[15] |
O’SHEA T J, ROY T, and CLANCY T C. Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 168–179. doi: 10.1109/JSTSP.2018.2797022.
|
[16] |
HOU Changbo, LIU Guowei, TIAN Qiao, et al. Multisignal modulation classification using sliding window detection and complex convolutional network in frequency domain[J]. IEEE Internet of Things Journal, 2022, 9(19): 19438–19449. doi: 10.1109/JIOT.2022.3167107.
|
[17] |
张思成, 林云, 涂涯, 等. 基于轻量级深度神经网络的电磁信号调制识别技术[J]. 通信学报, 2020, 41(11): 12–21. doi: 10.11959/j.issn.1000-436x.2020237.
ZHANG Sicheng, LIN Yun, TU Ya, et al. Electromagnetic signal modulation recognition technology based on lightweight deep neural network[J]. Journal on Communications, 2020, 41(11): 12–21. doi: 10.11959/j.issn.1000-436x.2020237.
|
[18] |
STRUBELL E, GANESH A, and MCCALLUM A. Energy and policy considerations for deep learning in NLP[C]. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 2019: 3645–3650. doi: 10.18653/v1/P19-1355.
|
[19] |
CHEN Hanting, WANG Yunhe, XU Chunjing, et al. AdderNet: Do we really need multiplications in deep learning?[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 1465–1474. doi: 10.1109/CVPR42600.2020.00154.
|
[20] |
王建新, 宋辉. 基于星座图的数字调制方式识别[J]. 通信学报, 2004, 25(6): 166–173. doi: 10.3321/j.issn:1000-436X.2004.06.023.
WANG Jianxin and SONG Hui. Digital modulation recognition based on constellation diagram[J]. Journal on Communications, 2004, 25(6): 166–173. doi: 10.3321/j.issn:1000-436X.2004.06.023.
|
[21] |
SHAFIQ M and GU Zhaoquan. Deep residual learning for image recognition: A survey[J]. Applied Sciences, 2022, 12(18): 8972. doi: 10.3390/app12188972.
|
[22] |
OTAO N, KISHIYAMA Y, and HIGUCHI K. Performance of non-orthogonal access with SIC in cellular downlink using proportional fair-based resource allocation[C]. 2012 International Symposium on Wireless Communication Systems (ISWCS), Paris, France, 2012: 476–480. doi: 10.1109/ISWCS.2012.6328413.
|
[23] |
崔荣涛, 李辉, 万坚, 等. 一种基于过采样的单通道MPSK信号盲分离算法[J]. 电子与信息学报, 2009, 31(3): 566–569. doi: 10.3724/SP.J.1146.2007.01792.
CUI Rongtao, LI Hui, WAN Jian, et al. An over-sampling based blind separation algorithm of single channel MPSK signals[J]. Journal of Electronics & Information Technology, 2009, 31(3): 566–569. doi: 10.3724/SP.J.1146.2007.01792.
|
[24] |
PENG Linning, ZHANG Junqing, LIU Ming, et al. Deep learning based RF fingerprint identification using differential constellation trace figure[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 1091–1095. doi: 10.1109/TVT.2019.2950670.
|
[25] |
IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. The 32nd International Conference on Machine Learning, Lille, France, 2015: 448–456. doi: 10.5555/3045118.3045167.
|
[26] |
LOSHCHILOV I and HUTTER F. SGDR: Stochastic gradient descent with warm restarts[C]. 5th International Conference on Learning Representations, Toulon, France, 2017. doi: 10.48550/arXiv.1608.03983.
|
[27] |
HOROWITZ M. 1.1 Computing's energy problem (and what we can do about it)[C]. 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, USA, 2014: 10–14. doi: 10.1109/ISSCC.2014.6757323.
|
[28] |
施建锋, 杨照辉, 黄诺, 等. 面向6G的用户为中心网络研究综述[J]. 电子与信息学报, 2023, 45(5): 1873–1887. doi: 10.11999/ JEIT220242.
SHI Jianfeng, YANG Zhaohui, HUANG Nuo, et al. A survey on user-centric networks for 6G[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1873–1887. doi: 10.11999/JEIT220242.
|
[29] |
张海君, 陈安琪, 李亚博, 等. 6G移动网络关键技术[J]. 通信学报, 2022, 43(7): 189–202. doi: 10.11959/j.issn.1000-436x.2022140.
ZHANG Haijun, CHEN Anqi, LI Yabo, et al. Key technologies of 6G mobile network[J]. Journal on Communications, 2022, 43(7): 189–202. doi: 10.11959/j.issn.1000-436x.2022140.
|