Citation: | ZHANG Yinghui, LI Guoteng, HAN Gang, CAO Jin, ZHENG Dong. Secure and Efficient Authentication and Key Agreement Scheme for Multicast Services in 5G Vehicular to Everything[J]. Journal of Electronics & Information Technology, 2024, 46(7): 3026-3035. doi: 10.11999/JEIT231118 |
[1] |
GARCIA M H C, MOLINA-GALAN A, BOBAN M, et al. A tutorial on 5G NR V2X communications[J]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 1972–2026. doi: 10.1109/COMST.2021.3057017.
|
[2] |
GYAWALI S, XU Shengjie, QIAN Yi, et al. Challenges and solutions for cellular based V2X communications[J]. IEEE Communications Surveys & Tutorials, 2021, 23(1): 222–255. doi: 10.1109/COMST.2020.3029723.
|
[3] |
CHEN Shanzhi, HU Jinling, SHI Yan, et al. Vehicle-to-everything (V2X) services supported by LTE-based systems and 5G[J]. IEEE Communications Standards Magazine, 2017, 1(2): 70–76. doi: 10.1109/MCOMSTD.2017.1700015.
|
[4] |
GANESAN K, LOHR J, MALLICK P B, et al. NR sidelink design overview for advanced V2X service[J]. IEEE Internet of Things Magazine, 2020, 3(1): 26–30. doi: 10.1109/IOTM.0001.1900071.
|
[5] |
SEHLA K, NGUYEN T M T, PUJOLLE G, et al. Resource allocation modes in C-V2X: From LTE-V2X to 5G-V2X[J]. IEEE Internet of Things Journal, 2022, 9(11): 8291–8314. doi: 10.1109/JIOT.2022.3159591.
|
[6] |
SHRIVASTAVA V K, BAEK S, and BAEK Y. 5G evolution for multicast and broadcast services in 3GPP release 17[J]. IEEE Communications Standards Magazine, 2022, 6(3): 70–76. doi: 10.1109/MCOMSTD.0001.2100068.
|
[7] |
ZHOU Wei, REN Changcheng, MA Chuan, et al. Multicast/broadcast service in integrated VANET-cellular heterogeneous wireless networks[C]. 2013 International Conference on Wireless Communications and Signal Processing, Hangzhou, China, 2013: 1–6. doi: 10.1109/WCSP.2013.6677246.
|
[8] |
XU Cheng, HUANG Xiaohong, MA Maode, et al. GAKAV: Group authentication and key agreement for LTE/LTE-A vehicular networks[C]. 2017 IEEE 19th International Conference on High Performance Computing and Communications; IEEE 15th International Conference on Smart City; IEEE 3rd International Conference on Data Science and Systems, Bangkok, Thailand, 2017: 412–418. doi: 10.1109/HPCC-SmartCity-DSS.2017.54.
|
[9] |
DUA A, KUMAR N, DAS A K, et al. Secure message communication protocol among vehicles in smart city[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4359–4373. doi: 10.1109/TVT.2017.2780183.
|
[10] |
ISLAM S K H, OBAIDAT M S, VIJAYAKUMAR P, et al. A robust and efficient password-based conditional privacy preserving authentication and group-key agreement protocol for VANETs[J]. Future Generation Computer Systems, 2018, 84: 216–227. doi: 10.1016/j.future.2017.07.002.
|
[11] |
ZHANG Jing, ZHONG Hong, CUI Jie, et al. SMAKA: Secure many-to-many authentication and key agreement scheme for vehicular networks[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 1810–1824. doi: 10.1109/TIFS.2020.3044855.
|
[12] |
XU Chang, LU Rongxing, WANG Huaxiong, et al. TJET: Ternary join-exit-tree based dynamic key management for vehicle platooning[J]. IEEE Access, 2017, 5: 26973–26989. doi: 10.1109/ACCESS.2017.2753778.
|
[13] |
CUI Jie, ZHANG Xiaoyu, ZHONG Hong, et al. Extensible conditional privacy protection authentication scheme for secure vehicular networks in a multi-cloud environment[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 1654–1667. doi: 10.1109/TIFS.2019.2946933.
|
[14] |
WEI Lu, CUI Jie, ZHONG Hong, et al. Proven secure tree-based authenticated key agreement for securing V2V and V2I communications in VANETs[J]. IEEE Transactions on Mobile Computing, 2022, 21(9): 3280–3297. doi: 10.1109/TMC.2021.3056712.
|
[15] |
MA Ruhui, CAO Jin, ZHANG Yinghui, et al. A group-based multicast service authentication and data transmission scheme for 5G-V2X[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 23976–23992. doi: 10.1109/TITS.2022.3197767.
|
[16] |
3GPP. Security architecture and procedures for 5G system (Release16): TS33.501[S]. 2020.
|
[17] |
3GPP. Security architecture and procedures for 5G system (Release 17): TS 33.501[Z]. 2022.
|
[18] |
AKTAR S, BÄRTSCHI A, BADAWY A H A, et al. A divide-and-conquer approach to Dicke state preparation[J]. IEEE Transactions on Quantum Engineering, 2022, 3: 3101816. doi: 10.1109/TQE.2022.3174547.
|
[19] |
CREMERS C J F. The scyther tool: Verification, falsification, and analysis of security protocols: Tool paper[C]. 20th International Conference on Computer Aided Verification, Princeton, USA, 2008: 414–418. doi: 10.1007/978-3-540-70545-1_38.
|
[20] |
CERVESATO I. The Dolev-Yao intruder is the most powerful attacker[C]. 16th Annual Symposium on Logic in Computer Science—LICS, Boston, USA, 2001, 1: 1–2.
|
[21] |
DE CARO A and IOVINO V. jPBC: Java pairing based cryptography[C]. 2011 IEEE symposium on computers and communications (ISCC), Kerkyra, Greece, 2011: 850–855. doi: 10.1109/ISCC.2011.5983948.
|