Citation: | LI Xing, FAN Yangyu, GUO Zhe, DUAN Yu, LIU Shiya. Edge Domain Adaptation for Stereo Matching[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2970-2980. doi: 10.11999/JEIT231113 |
[1] |
HIRSCHMULLER H. Stereo processing by semiglobal matching and mutual information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2): 328–341. doi: 10.1109/TPAMI.2007.1166.
|
[2] |
边继龙, 门朝光, 李香. 基于小基高比的快速立体匹配方法[J]. 电子与信息学报, 2012, 34(3): 517–522. doi: 10.3724/SP.J.1146.2011.00826.
BIAN Jilong, MEN Chaoguang, and LI Xiang. A fast stereo matching method based on small baseline[J]. Journal of Electronics & Information Technology, 2012, 34(3): 517–522. doi: 10.3724/SP.J.1146.2011.00826.
|
[3] |
MAYER N, ILG E, HÄUSSER P, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 4040–4048. doi: 10.1109/CVPR.2016.438.
|
[4] |
KENDALL A, MARTIROSYAN H, DASGUPTA S, et al. End-to-end learning of geometry and context for deep stereo regression[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 66–75. doi: 10.1109/ICCV.2017.17.
|
[5] |
LI Zhaoshuo, LIU Xingtong, DRENKOW N, et al. Revisiting stereo depth estimation from a sequence-to-sequence perspective with transformers[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 6177–6186. doi: 10.1109/ICCV48922.2021.00614.
|
[6] |
LIPSON L, TEED Z, and DENG Jia. RAFT-Stereo: Multilevel recurrent field transforms for stereo matching[C]. 2021 International Conference on 3D Vision, London, UK, 2021: 218–227. doi: 10.1109/3DV53792.2021.00032.
|
[7] |
LI Jiankun, WANG Peisen, XIONG Pengfei, et al. Practical stereo matching via cascaded recurrent network with adaptive correlation[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 16242–16251. doi: 10.1109/CVPR52688.2022.01578.
|
[8] |
RAO Zhibo, XIONG Bangshu, HE Mingyi, et al. Masked representation learning for domain generalized stereo matching[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 5435–5444. doi: 10.1109/CVPR52729.2023.00526.
|
[9] |
ROS G, SELLART L, MATERZYNSKA J, et al. The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 3234–3243. doi: 10.1109/CVPR.2016.352.
|
[10] |
CHANG Jiaren and CHEN Yongsheng. Pyramid stereo matching network[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 5410–5418. doi: 10.1109/CVPR.2018.00567.
|
[11] |
LIU Shaolei, YIN Siqi, QU Linhao, et al. Reducing domain gap in frequency and spatial domain for cross-modality domain adaptation on medical image segmentation[C]. The 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 1719–1727. doi: 10.1609/aaai.v37i2.25260.
|
[12] |
刘彦呈, 董张伟, 朱鹏莅, 等. 基于特征解耦的无监督水下图像增强[J]. 电子与信息学报, 2022, 44(10): 3389–3398. doi: 10.11999/JEIT211517.
LIU Yancheng, DONG Zhangwei, ZHU Pengli, et al. Unsupervised underwater image enhancement based on feature disentanglement[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3389–3398. doi: 10.11999/JEIT211517.
|
[13] |
LI Xing, FAN Yangyu, LV Guoyun, et al. Area-based correlation and non-local attention network for stereo matching[J]. The Visual Computer, 2022, 38(11): 3881–3895. doi: 10.1007/s00371-021-02228-w.
|
[14] |
WANG Xintao, YU Ke, DONG Chao, et al. Recovering realistic texture in image super-resolution by deep spatial feature transform[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 606–615. doi: 10.1109/CVPR.2018.00070.
|
[15] |
ZHU Junyan, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2242–2251. doi: 10.1109/ICCV.2017.244.
|
[16] |
GEIGER A, LENZ P, and URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 3354–3361. doi: 10.1109/CVPR.2012.6248074.
|
[17] |
MENZE M and GEIGER A. Object scene flow for autonomous vehicles[C]. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3061–3070. doi: 10.1109/CVPR.2015.7298925.
|
[18] |
SCHARSTEIN D, HIRSCHMÜLLER H, KITAJIMA Y, et al. High-resolution stereo datasets with subpixel-accurate ground truth[C]. The 36th DAGM German Conference on Pattern Recognition, Münster, Germany, 2014: 31–42. doi: 10.1007/978-3-319-11752-2_3.
|
[19] |
SCHÖPS T, SCHÖNBERGER J L, GALLIANI S, et al. A multi-view stereo benchmark with high-resolution images and multi-camera videos[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2538–2547. doi: 10.1109/CVPR.2017.272.
|
[20] |
XIE Saining and TU Zhuowen. Holistically-nested edge detection[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1395–1403. doi: 10.1109/ICCV.2015.164.
|
[21] |
GUO Xiaoyang, YANG Kai, YANG Wukui, et al. Group-wise correlation stereo network[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 3268–3277. doi: 10.1109/CVPR.2019.00339.
|
[22] |
RAO Zhibo, HE Mingyi, DAI Yuchao, et al. NLCA-Net: A non-local context attention network for stereo matching[J]. APSIPA Transactions on Signal and Information Processing, 2020, 9(1): e18. doi: 10.1017/ATSIP.2020.16.
|
[23] |
PASS G, ZABIH R, and MILLER J. Comparing images using color coherence vectors[C]. The Fourth ACM International Conference on Multimedia, New York, USA, 1997: 65–73. doi: 10.1145/244130.244148.
|
[24] |
CHENG Xuelian, ZHONG Yiran, HARANDI M, et al. Hierarchical neural architecture search for deep stereo matching[C]. The 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 1858. doi: 10.5555/3495724.3497582.
|
[25] |
LIANG Zhengfa, FENG Yiliu, GUO Yulan, et al. Learning for disparity estimation through feature constancy[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 2811–2820. doi: 10.1109/CVPR.2018.00297.
|
[26] |
ZHANG Feihu, PRISACARIU V, YANG Ruigang, et al. GA-Net: Guided aggregation net for end-to-end stereo matching[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 185–194. doi: 10.1109/CVPR.2019.00027.
|
[27] |
XU Haofei and ZHANG Juyong. AANet: Adaptive aggregation network for efficient stereo matching[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 1956–1965. doi: 10.1109/CVPR42600.2020.00203.
|
[28] |
HOSNI A, RHEMANN C, BLEYER M, et al. Fast cost-volume filtering for visual correspondence and beyond[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(2): 504–511. doi: 10.1109/TPAMI.2012.156.
|
[29] |
BLEYER M, RHEMANN C, and ROTHER C. PatchMatch stereo-stereo matching with slanted support windows[C]. British Machine Vision Conference 2011, Dundee, UK, 2011: 1–11. doi: 10.5244/C.25.14.
|
[30] |
YIN Zhichao, DARRELL T, and YU F. Hierarchical discrete distribution decomposition for match density estimation[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA: 2019: 6037–6046. doi: 10.1109/CVPR.2019.00620.
|
[31] |
SONG Xiao, ZHAO Xu, FANG Liangji, et al. EdgeStereo: An effective multi-task learning network for stereo matching and edge detection[J]. International Journal of Computer Vision, 2020, 128(4): 910–930. doi: 10.1007/s11263-019-01287-w.
|
[32] |
ZHANG Feihu, QI Xiaojuan, YANG Ruigang, et al. Domain-invariant stereo matching networks[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 420–439. doi: 10.1007/978-3-030-58536-5_25.
|
[33] |
CAI Changjiang, POGGI M, MATTOCCIA S, et al. Matching-space stereo networks for cross-domain generalization[C]. 2020 International Conference on 3D Vision, Fukuoka, Japan, 2020: 364–373. doi: 10.1109/3DV50981.2020.00046.
|
[34] |
LING Zhi, YANG Kai, LI Jinlong, et al. Domain-adaptive modules for stereo matching network[J]. Neurocomputing, 2021, 461: 217–227. doi: 10.1016/j.neucom.2021.06.004.
|
[35] |
LIU Rui, YANG Chengxi, SUN Wenxiu, et al. StereoGAN: Bridging synthetic-to-real domain gap by joint optimization of domain translation and stereo matching[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 12754–12763. doi: 10.1109/CVPR42600.2020.01277.
|
[36] |
CHUAH Weiqin, TENNAKOON R, HOSEINNEZHAD R, et al. ITSA: An information-theoretic approach to automatic shortcut avoidance and domain generalization in stereo matching networks[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 13012–13022. doi: 10.1109/CVPR52688.2022.01268.
|
[37] |
ZHANG Jiawei, WANH Xiang, BAI Xiao, et al. Revisiting domain generalized stereo matching networks from a feature consistency perspective[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 12991–13001. doi: 10.1109/CVPR52688.2022.01266.
|