Advanced Search
Volume 46 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
ZHANG Guohua, QIN Yu, LOU Mengjuan, FANG Yi. Row-weight Universal Algebraic Constructions of Girth-8 Quasi-Cyclic Low-Density Parity-Check Codes with Large Column Weights[J]. Journal of Electronics & Information Technology, 2024, 46(7): 3019-3025. doi: 10.11999/JEIT231111
Citation: ZHANG Guohua, QIN Yu, LOU Mengjuan, FANG Yi. Row-weight Universal Algebraic Constructions of Girth-8 Quasi-Cyclic Low-Density Parity-Check Codes with Large Column Weights[J]. Journal of Electronics & Information Technology, 2024, 46(7): 3019-3025. doi: 10.11999/JEIT231111

Row-weight Universal Algebraic Constructions of Girth-8 Quasi-Cyclic Low-Density Parity-Check Codes with Large Column Weights

doi: 10.11999/JEIT231111
Funds:  The National Natural Science Foundation of China (62322106, 62071131), International Collaborative Research Program of Guangdong Science and Technology Department (2022A0505050070)
  • Received Date: 2023-10-12
  • Rev Recd Date: 2024-01-25
  • Available Online: 2024-02-07
  • Publish Date: 2024-07-29
  • Short Quasi-Cyclic (QC) Low-Density Parity-Check (LDPC) codes without small cycles suitable for an arbitrary row weight (i.e., Row-Weight Universal (RWU)), are of great significance for both theoretical research and engineering application. Existing methods having RWU property and guaranteeing the nonexistence of 4-cycles and 6-cycles, can only offer short QC-LDPC codes for the column weights of 3 and 4. Based on the Greatest Common Divisor (GCD) framework, three new methods are proposed in this paper for the column weights of 5 and 6, which can possess RWU property and at the same time remove all 4-cycles and 6-cycles. Compared with existing methods with RWU property, the code lengths of the novel methods are sharply reduced from the fourth power of row weight to the third power of row weight. Therefore, the new methods can provide short RWU QC-LDPC codes without 4-cycles and 6-cycles for occasions where base codes with large column weights are required, such as composite constructions and advanced optimization pertaining to QC-LDPC codes. Moreover, compared with the search-based symmetric QC-LDPC codes, the new codes need no search, have lower description complexity, and exhibit better decoding performance.
  • loading
  • [1]
    ZHANG Lintao and WANG Juhua. Construction of QC-LDPC codes from Sidon sequence using permutation and segmentation[J]. IEEE Communications Letters, 2022, 26(8): 1710–1714. doi: 10.1109/LCOMM.2022.3177511.
    [2]
    AMIRZADE F, SADEGHI M R, and PANARIO D. Construction of protograph-based LDPC codes with chordless short cycles[J]. IEEE Transactions on Information Theory, 2024, 70(1): 51–74. doi: 10.1109/TIT.2023.3307583.
    [3]
    SMARANDACHE R and MITCHELL D G M. A unifying framework to construct QC-LDPC Tanner graphs of desired girth[J]. IEEE Transactions on Information Theory, 2022, 68(9): 5802–5822. doi: 10.1109/TIT.2022.3170331.
    [4]
    VASIC B, PEDAGANI K, and IVKOVIC M. High-rate girth-eight low-density parity-check codes on rectangular integer lattices[J]. IEEE Transactions on Communications, 2004, 52(8): 1248–1252. doi: 10.1109/TCOMM.2004.833037.
    [5]
    FOSSORIER M P C. Quasic-cyclic low-density parity-check codes from circulant permutation matrices[J]. IEEE Transactions on Information Theory, 2004, 50(8): 1788–1793. doi: 10.1109/TIT.2004.831841.
    [6]
    BOCHAROVA I E, KUDRYASHOV B D, OVSYANNIKOV E P, et al. Design and analysis of NB QC-LDPC codes over small alphabets[J]. IEEE Transactions on Communications, 2022, 70(5): 2964–2976. doi: 10.1109/TCOMM.2022.3160176.
    [7]
    TASDIGHI A, BANIHASHEMI A H, and SADEGHI M R. Symmetrical constructions for regular girth-8 QC-LDPC codes[J]. IEEE Transactions on Communications, 2017, 65(1): 14–22. doi: 10.1109/TCOMM.2016.2617335.
    [8]
    张国华, 王新梅. 围长至少为8的QC-LDPC码的新构造: 一种显式框架[J]. 电子学报, 2012, 40(2): 331–337. doi: 10.3969/j.issn.0372-2112.2012.02.020.

    ZHANG Guohua and WANG Xinmei. Novel constructions of QC-LDPC codes with girth at least eight: an explicit framework[J]. Acta Electronica Sinica, 2012, 40(2): 331–337. doi: 10.3969/j.issn.0372-2112.2012.02.020.
    [9]
    ZHANG Jianhua and ZHANG Guohua. Deterministic girth-eight QC-LDPC codes with large column weight[J]. IEEE Communications Letters, 2014, 18(4): 656–659. doi: 10.1109/LCOMM.2014.030114.132853.
    [10]
    MAJDZADE M and GHOLAMI M. On the class of high-rate QC-LDPC codes with girth 8 from sequences satisfied in GCD condition[J]. IEEE Communications Letters, 2020, 24(7): 1391–1394. doi: 10.1109/LCOMM.2020.2983019.
    [11]
    TAO Xiongfei, CHEN Xin, and WANG Bifang. On the construction of QC-LDPC codes based on integer sequence with low error floor[J]. IEEE Communications Letters, 2022, 26(10): 2267–2271. doi: 10.1109/LCOMM.2022.3187435.
    [12]
    张轶, 达新宇, 苏一栋. 利用等差数列构造大围长准循环低密度奇偶校验码[J]. 电子与信息学报, 2015, 37(2): 394–398. doi: 10.11999/JEIT140538.

    ZHANG Yi, DA Xinyu, and SU Yidong. Construction of quasi-cyclic low-density parity-check codes with a large girth based on arithmetic progression[J]. Journal of Electronics & Information Technology, 2015, 37(2): 394–398. doi: 10.11999/JEIT140538.
    [13]
    张国华, 陈超, 杨洋, 等. Girth-8 (3, L)-规则QC-LDPC码的一种确定性构造方法[J]. 电子与信息学报, 2010, 32(5): 1152–1156. doi: 10.3724/SP.J.1146.2009.00838.

    ZHANG Guohua, CHEN Chao, YANG Yang, et al. Girth-8 (3, L)-regular QC-LDPC codes based on novel deterministic design technique[J]. Journal of Electronics & Information Technology, 2010, 32(5): 1152–1156. doi: 10.3724/SP.J.1146.2009.00838.
    [14]
    ZHANG Guohua, HU Yulin, FANG Yi, et al. Relation between GCD constraint and full-length row-multiplier QC-LDPC codes with girth eight[J]. IEEE Communications Letters, 2021, 25(9): 2820–2823. doi: 10.1109/LCOMM.2021.3096386.
    [15]
    ZHANG Yi and DA Xinyu. Construction of girth-eight QC-LDPC codes from arithmetic progression sequence with large column weight[J]. Electronics Letters, 2015, 51(16): 1257–1259. doi: 10.1049/el.2015.0389.
    [16]
    张国华, 孙蓉, 王新梅. 围长为8的QC-LDPC码的显式构造及其在CRT方法中的应用[J]. 通信学报, 2012, 33(3): 171–176. doi: 1000-436X(2012)03-0171-06.

    ZHANG Guohua, SUN Rong, and WANG Xinmei. Explicit construction of girth-eight QC-LDPC codes and its application in CRT method[J]. Journal on Communications, 2012, 33(3): 171–176. doi: 1000-436X(2012)03-0171-06.
    [17]
    ZHANG Guohua, SUN Rong, and WANG Xinmei. Several explicit constructions for (3, L) QC-LDPC codes with girth at least eight[J]. IEEE Communications Letters, 2013, 17(9): 1822–1825. doi: 10.1109/LCOMM.2013.070913.130966.
    [18]
    KARIMI M and BANIHASHEMI A H. On the girth of quasi-cyclic protograph LDPC codes[J]. IEEE Transactions on Information Theory, 2013, 59(7): 4542–4552. doi: 10.1109/TIT.2013.2251395.
    [19]
    ZHANG Guohua, SUN Rong, and WANG Xinmei. Construction of girth-eight QC-LDPC codes from greatest common divisor[J]. IEEE Communications Letters, 2013, 17(2): 369–372. doi: 10.1109/LCOMM.2012.122012.122292.
    [20]
    WANG Juhua, ZHANG Jianhua, ZHOU Quan, et al. Full-length row-multiplier QC-LDPC codes with girth eight and short circulant sizes[J]. IEEE Access, 2023, 11: 22250–22265. doi: 10.1109/ACCESS.2023.3249464.
    [21]
    ZHANG Guohua, FANG Yi, and LIU Yuanhua. Automatic verification of GCD constraint for construction of girth-eight QC-LDPC codes[J]. IEEE Communications Letters, 2019, 23(9): 1453–1456. doi: 10.1109/LCOMM.2019.2925792.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(5)

    Article Metrics

    Article views (197) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return