Citation: | ZHU Xiaorong, HE Chuhong. Joint Routing and Resource Scheduling Algorithm for Large-scale Multi-mode Mesh Networks Based on Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2773-2782. doi: 10.11999/JEIT231103 |
[1] |
BEDI G, VENAYAGAMOORTHY G K, SINGH R, et al. Review of Internet of Things (IoT) in electric power and energy systems[J]. IEEE Internet of Things Journal, 2018, 5(2): 847–870. doi: 10.1109/JIOT.2018.2802704.
|
[2] |
TALEB S M, MERAIHI Y, GABIS A B, et al. Nodes placement in wireless mesh networks using optimization approaches: A survey[J]. Neural Computing and Applications, 2022, 34(7): 5283–5319. doi: 10.1007/s00521–022-06941-y.
|
[3] |
ALOTAIBI E and MUKHERJEE B. A survey on routing algorithms for wireless ad-hoc and mesh networks[J]. Computer Networks, 2012, 56(2): 940–965. doi: 10.1016/j.comnet.2011.10.011.
|
[4] |
WANG Lei, ZHANG Lianfang, SHU Yantai, et al. Multipath source routing in wireless ad hoc networks[C]. 2000 Canadian Conference on Electrical and Computer Engineering. Conference Proceedings. Navigating to a New Era (Cat. No. 00TH8492), Halifax, Canada, 2000: 479–483. doi: 10.1109/CCECE.2000.849755.
|
[5] |
GUO Xiaoyuan, WANG Feng, LIU Jiangchuan, et al. Path diversified multi-QoS optimization in multi-channel wireless mesh networks[J]. Wireless Networks, 2014, 20(6): 1583–1596. doi: 10.1007/s11276-014-0698-x.
|
[6] |
JIA Dongyao, ZOU Shengxiong, LI Meng, et al. Adaptive multi-path routing based on an improved leapfrog algorithm[J]. Information Sciences, 2016, 367/368: 615–629. doi: 10.1016/j.ins.2016.07.021.
|
[7] |
SUN Yaohua, PENG Mugen, ZHOU Yangcheng, et al. Application of machine learning in wireless networks: Key techniques and open issues[J]. IEEE Communications Surveys & Tutorials, 2019, 21(4): 3072–3108. doi: 10.1109/COMST.2019.2924243.
|
[8] |
DI VALERIO V, LO PRESTI F, PETRIOLI C, et al. CARMA: Channel-aware reinforcement learning-based multi-path adaptive routing for underwater wireless sensor networks[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(11): 2634–2647. doi: 10.1109/JSAC.2019.2933968.
|
[9] |
LIU Qingzhi, CHENG Long, JIA A L, et al. Deep reinforcement learning for communication flow control in wireless mesh networks[J]. IEEE Network, 2021, 35(2): 112–119. doi: 10.1109/MNET.011.2000303.
|
[10] |
NG P C and SHE J. Remote proximity sensing with a novel Q-learning in Bluetooth low energy network[J]. IEEE Transactions on Wireless Communications, 2022, 21(8): 6156–6166. doi: 10.1109/TWC.2022.3147411.
|
[11] |
WANG Jinxin, ZHANG Fan, XIE Zhonglin, et al. Joint bandwidth allocation and path selection in WANs with path cardinality constraints[J]. Journal of Communications and Information Networks, 2021, 6(3): 237–250. doi: 10.23919/JCIN.2021.9549120.
|
[12] |
APPINI N R and REDDY A R. Joint channel assignment and bandwidth reservation using Improved FireFly Algorithm (IFA) in Wireless Mesh Networks (WMN)[J]. Wireless Personal Communications, 2023, 131(1): 455–470. doi: 10.1007/s11277-023-10439-8.
|
[13] |
BINH L H and DUONG T V T. Load balancing routing under constraints of quality of transmission in mesh wireless network based on software defined networking[J]. Journal of Communications and Networks, 2021, 23(1): 12–22. doi: 10.23919/JCN.2021.000004.
|
[14] |
KUMAR R, VENKANNA U, and TIWARI V. Opt-ACM: An optimized load balancing based admission control mechanism for software defined hybrid wireless based IoT (SDHW-IoT) network[J]. Computer Networks, 2021, 188: 107888. doi: 10.1016/j.comnet.2021.107888.
|
[15] |
ALHARBI N, MACKENZIE L, and PEZAROS D. Enhancing graph routing algorithm of industrial wireless sensor networks using the covariance-matrix adaptation evolution strategy[J]. Sensors, 2022, 22(19): 7462. doi: 10.3390/s22197462.
|
[16] |
BAROLLI A, BYLYKBASHI K, QAFZEZI E, et al. A comparison study of Weibull, normal and Boulevard distributions for wireless mesh networks considering different router replacement methods by a hybrid intelligent simulation system[J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14(8): 10181–10194. doi: 10.1007/s12652-021-03680-1.
|
[17] |
ROZHOŇ V, HAEUPLER B, MARTINSSON A, et al. Parallel breadth-first search and exact shortest paths and stronger notions for approximate distances[C]. Proceedings of the 55th Annual ACM Symposium on Theory of Computing, Orlando, USA, 2023: 321–334. doi: 10.1145/3564246.3585235.
|
[18] |
SILVA N, WERNECK H, SILVA T, et al. Multi-armed bandits in recommendation systems: A survey of the state-of-the-art and future directions[J]. Expert Systems with Applications, 2022, 197: 116669. doi: 10.1016/j.eswa.2022.116669.
|
[19] |
LEE S, YU H, and LEE H. Multiagent Q-learning-based multi-UAV wireless networks for maximizing energy efficiency: Deployment and power control strategy design[J]. IEEE Internet of Things Journal, 2022, 9(9): 6434–6442. doi: 10.1109/JIOT.2021.3113128.
|
[20] |
ZAATOURI I, ALYAOUI N, GUILOUFI A B, et al. Design and performance analysis of objective functions for RPL routing protocol[J]. Wireless Personal Communications, 2022, 124(3): 2677–2697. doi: 10.1007/s11277-022-09484-6.
|