Citation: | ZHANG Yanhua, CHEN Yan, LIU Ximeng, YIN Yifeng, HU Yupu. Chameleon Signature Schemes over Lattices in the Standard Model[J]. Journal of Electronics & Information Technology, 2024, 46(7): 3002-3009. doi: 10.11999/JEIT231093 |
[1] |
CHAUM D and VAN ANTWERPEN H. Undeniable signatures[M]. BRASSARD G. Advances in Cryptology - CRYPTO’89. New York: Springer, 1990: 212–216. doi: 10.1007/0-387-34805-0_20.
|
[2] |
JAKOBSSON M, SAKO K, and IMPAGLIAZZO R. Designated verifier proofs and their applications[C]. The International Conference on the Theory and Applications of Cryptographic Techniques, Saragossa, Spain, 1996: 143–154. doi: 1 0.1007/3-540-68339-9_13.
|
[3] |
KRAWCZYK H and RABIN T. Chameleon hashing and signatures[EB/OL]. http://eprint.iacr.org/1998/10, 1998.
|
[4] |
WU Chunhui, KE Lishan, and DU Yusong. Quantum resistant key-exposure free chameleon hash and applications in redactable blockchain[J]. Information Sciences, 2021, 548: 438–449. doi: 10.1016/j.ins.2020.10.008.
|
[5] |
JIA Meng, CHEN Jing, HE Kun, et al. Redactable blockchain from decentralized chameleon hash functions[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 2771–2783. doi: 10.1109/TIFS.2022.3192716.
|
[6] |
TSUNODA T, NIMURA K, YAMAMOTO D, et al. A chameleon hash-based method for proving execution of business processes[J]. Journal of Information Processing, 2022, 30: 613–625. doi: 10.2197/ipsjjip.30.613.
|
[7] |
LI Cong, SHEN Qingni, XIE Zhikang, et al. Efficient identity-based chameleon hash for mobile devices[C]. 2022 IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore, 2022: 3039–3043. doi: 10.1109/ICASSP43922.2022.9746617.
|
[8] |
NIST. PQC standardization process: Announcing four candidates to be standardized, plus fourth round candidates[EB/OL].https://csrc.nist.gov/news/2022/pqc-candidates-to-be-standardized-and-round-4, 2022.
|
[9] |
JOSEPH D, MISOCZKI R, MANZANO M, et al. Transitioning organizations to post-quantum cryptography[J]. Nature, 2022, 605(7909): 237–243. doi: 10.1038/s41586-022-04623-2.
|
[10] |
GENTRY C, PEIKERT C, and VAIKUNTANATHAN V. Trapdoors for hard lattices and new cryptographic constructions[C]. The 40th Annual ACM Symposium on Theory of Computing, Victoria, Canada, 2008: 197–206. doi: 10.1145/1374376.1374407.
|
[11] |
CASH D, HOFHEINZ D, KILTZ E, et al. Bonsai trees, or how to delegate a lattice basis[C]. The 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, France, 2010: 523–552. doi: 10.1007/978-3-642-13190-5_27.
|
[12] |
谢璇, 喻建平, 王廷, 等. 基于格的变色龙签名方案[J]. 计算机科学, 2013, 40(2): 117–119. doi: 10.3969/j.issn.1002-137X.2013.02.026.
XIE Xuan, YU Jianping, WANG Ting, et al. Chameleon signature scheme based on lattice[J]. Computer Science, 2013, 40(2): 117–119. doi: 10.3969/j.issn.1002-137X.2013.02.026.
|
[13] |
NOH G and JEONG I R. Strong designated verifier signature scheme from lattices in the standard model[J]. Security and Communication Networks, 2016, 9(18): 6202–6214. doi: 10.1002/sec.1766.
|
[14] |
XIE Dong, PENG Haipeng, LI Lixiang, et al. Homomorphic signatures from chameleon hash functions[J]. Information Technology and Control, 2017, 46(2): 274–286. doi: 10.5755/j01.itc.46.2.14320.
|
[15] |
THANALAKSHMI P, ANITHA R, ANBAZHAGAN N, et al. A hash-based quantum-resistant chameleon signature scheme[J]. Sensors, 2021, 21(24): 8417. doi: 10.3390/s21248417.
|
[16] |
张彦华, 陈岩, 刘西蒙, 等. 格上基于身份的变色龙签名方案[J]. 电子与信息学报, 2024, 46(2): 757–764. doi: 10.11999/JEIT230155.
ZHANG Yanhua, CHEN Yan, LIU Ximeng, et al. Identity-based chameleon signature schemes over lattices[J]. Journal of Electronics & Information Technology, 2024, 46(2): 757–764. doi: 10.11999/JEIT230155.
|
[17] |
AJTAI M. Generating hard instances of lattice problems (extended abstract)[C]. The 28th Annual ACM Symposium on Theory of Computing, Philadelphia, USA, 1996: 99–108. doi: 10.1145/237814.237838.
|
[18] |
REGEV O. On lattices, learning with errors, random linear codes, and cryptography[C]. The 37th Annual ACM Symposium on Theory of Computing, Baltimore, USA, 2005: 84–93. doi: 10.1145/1060590.1060603.
|
[19] |
ALWEN J and PEIKERT C. Generating shorter bases for hard random lattices[J]. Theory of Computing Systems, 2011, 48(3): 535–553. doi: 10.1007/s00224-010-9278-3.
|
[20] |
MICCIANCIO D and PEIKERT C. Trapdoors for lattices: Simpler, tighter, faster, smaller[C]. The 31st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, 2012: 700–718. doi: 10.1007/978-3-642-29011-4_41.
|