Citation: | WANG Yuanbin, WU Bingchao. Infrared Image Recognition of Substation Equipment Based on Adaptive Feature Fusion and Attention Mechanism[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3749-3756. doi: 10.11999/JEIT231047 |
[1] |
LI Jianqi, XU Yaqian, NIE Keheng, et al. PEDNet: A lightweight detection network of power equipment in infrared image based on YOLOv4-Tiny[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 5004312. doi: 10.1109/tim.2023.3235416.
|
[2] |
XIA Changjie, REN Ming, WANG Bing, et al. Infrared thermography-based diagnostics on power equipment: State-of-the-art[J]. High Voltage, 2021, 6(3): 387–407. doi: 10.1049/hve2.12023.
|
[3] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal network[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 91–99.
|
[4] |
OU Jianhua, WANG Jianguo, XUE Jian, et al. Infrared image target detection of substation electrical equipment using an improved faster R-CNN[J]. IEEE Transactions on Power Delivery, 2023, 38(1): 387–396. doi: 10.1109/tpwrd.2022.3191694.
|
[5] |
王妤, 陈秀新, 袁和金. 基于改进Faster RCNN的变电站红外图像多目标识别[J]. 传感技术学报, 2021, 34(4): 522–530. doi: 10.3969/j.issn.1004-1699.2021.04.014.
WANG Yu, CHEN Xiuxin, and YUAN Hejin. Multi-target recognition of substation infrared image based on improved Faster RCNN[J]. Chinese Journal of Sensors and Actuators, 2021, 34(4): 522–530. doi: 10.3969/j.issn.1004-1699.2021.04.014.
|
[6] |
LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37. doi: 10.1007/978-3-319-46448-0_2.
|
[7] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 779–788. doi: 10.1109/CVPR.2016.91.
|
[8] |
王旭红, 李浩, 樊绍胜, 等. 基于改进SSD的电力设备红外图像异常自动检测方法[J]. 电工技术学报, 2020, 35(S1): 302–310. doi: 10.19595/j.cnki.1000-6753.tces.l80426.
WANG Xuhong, LI Hao, FAN Shaosheng, et al. Infrared image anomaly automatic detection method for power equipment based on improved single shot multi box detection[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 302–310. doi: 10.19595/j.cnki.1000-6753.tces.l80426.
|
[9] |
谭宇璇, 樊绍胜. 基于图像增强与深度学习的变电设备红外热像识别方法[J]. 中国电机工程学报, 2021, 41(23): 7990–7997. doi: 10.13334/j.0258-8013.pcsee.202487.
TAN Yuxuan and FAN Shaosheng. Infrared thermal image recognition of substation equipment based on image enhancement and deep learning[J]. Proceedings of the CSEE, 2021, 41(23): 7990–7997. doi: 10.13334/j.0258-8013.pcsee.202487.
|
[10] |
王媛彬, 李媛媛, 段誉, 等. 基于轻量骨干网络和注意力结构的变电设备红外图像识别[J]. 电网技术, 2023, 47(10): 4358–4369. doi: 10.13335/j.1000-3673.pst.2022.2113.
WANG Yuanbin, LI Yuanyuan, DUAN Yu, et al. Infrared image recognition of substation equipment based on lightweight backbone network and attention mechanism[J]. Power System Technology, 2023, 47(10): 4358–4369. doi: 10.13335/j.1000-3673.pst.2022.2113.
|
[11] |
DUAN Kaiwen, BAI Song, XIE Lingxi, et al. CenterNet: Keypoint triplets for object detection[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 6568–6577. doi: 10.1109/iccv.2019.00667.
|
[12] |
黄悦华, 杨楚睿, 陈晨, 等. 基于改进Centernet的变电设备红外检测方法[J]. 电子测量技术, 2023, 46(4): 142–148. doi: 10.19651/j.cnki.emt.2210406.
HUANG Yuehua, YANG Churui, CHEN Chen, et al. Infrared detection method of substation equipment based on improved Centernet[J]. Electronic Measurement Technology, 2023, 46(4): 142–148. doi: 10.19651/j.cnki.emt.2210406.
|
[13] |
ZHENG Hanbo, CUI Yaohui, FAN Xianhao, et al. An infrared image detection method of substation equipment combining Iresgroup structure and CenterNet[J]. IEEE Transactions on Power Delivery, 2022, 37(6): 4757–4765. doi: 10.1109/tpwrd.2022.3158818.
|
[14] |
CHENG Xun and YU Jianbo. RetinaNet with difference channel attention and adaptively spatial feature fusion for steel surface defect detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 2503911. doi: 10.1109/tim.2020.3040485.
|
[15] |
LI Yuancheng, ZHOU Shenglong, CHEN Hui, et al. Attention-based fusion factor in FPN for object detection[J]. Applied Intelligence, 2022, 52(13): 15547–15556. doi: 10.1007/s10489-022-03220-0.
|
[16] |
NIU Zhaoyang, ZHONG Guoqiang, and YU Hui. A review on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452: 48–62. doi: 10.1016/j.neucom.2021.03.091.
|
[17] |
谢雯, 王若男, 羊鑫, 等. 融合深度可分离卷积的多尺度残差UNet在PolSAR地物分类中的研究[J]. 电子与信息学报, 2023, 45(8): 2975–2985. doi: 10.11999/JEIT220867.
XIE Wen, WANG Ruonan, YANG Xin, et al. Research on multi-scale residual UNet fused with depthwise separable convolution in PolSAR terrain classification[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2975–2985. doi: 10.11999/JEIT220867.
|
[18] |
LI Feng, ZURADA J M, and WU Wei. Smooth group L1/2 regularization for input layer of feedforward neural networks[J]. Neurocomputing, 2018, 314: 109–119. doi: 10.1016/j.neucom.2018.06.046.
|
[19] |
康守强, 杨佳轩, 王玉静, 等. 基于改进宽度模型迁移学习的不同负载下滚动轴承状态快速分类方法[J]. 电子与信息学报, 2023, 45(5): 1824–1832. doi: 10.11999/JEIT220401.
KANG Shouqiang, YANG Jiaxuan, WANG Yujing, et al. A fast classification method of rolling bearing state under different loads based on improved broad model transfer learning[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1824–1832. doi: 10.11999/JEIT 220401.
|