Advanced Search
Volume 46 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
WANG Yuanbin, WU Bingchao. Infrared Image Recognition of Substation Equipment Based on Adaptive Feature Fusion and Attention Mechanism[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3749-3756. doi: 10.11999/JEIT231047
Citation: WANG Yuanbin, WU Bingchao. Infrared Image Recognition of Substation Equipment Based on Adaptive Feature Fusion and Attention Mechanism[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3749-3756. doi: 10.11999/JEIT231047

Infrared Image Recognition of Substation Equipment Based on Adaptive Feature Fusion and Attention Mechanism

doi: 10.11999/JEIT231047
Funds:  The National Natural Science Foundation of China (52174198), The National Key Research and Development Program of Shaanxi Province (2023 YBSF-133), The Construction of Qinchuangyuan Scientists and Engineers Team in Shaanxi Province (2022KXJ-166)
  • Received Date: 2023-09-27
  • Rev Recd Date: 2023-12-03
  • Available Online: 2023-12-14
  • Publish Date: 2024-09-26
  • To address the challenges of poor recognition effect of the infrared substation equipment image caused by multi-target, small target and occlusion target in complex background, an infrared image recognition method for substation equipment based on CenterNet is proposed. By combining the Adaptive Spatial Feature Fusion(ASFF) module and Feature Pyramid Networks (FPN), a feature fusion network with the structure of ASFF+FPN is constructed, and the cross-scale feature fusion capability of the model for multi-target and small target is enhanced, which excludes background information. To improve the feature capturing ability of occluding targets, the global attention mechanism is introduced to the feature fusion network to enhance target saliency. Additionally, depthwise separable convolution is introduced to reduce parameters number and model inference time, and a lightweight model is achieved. Finally, the problem of poor sensitivity to obscured targets is overcame by using the distribution focal loss function, and the convergence speed and recognition accuracy is improved. Tests are performed on a self-built dataset containing seven infrared substation equipment images. Experimental results demonstrate that the proposed algorithm achieves a recognition accuracy of 95.19%, an improvement of 3.55% compared with the original algorithm, while it only has 32.52M model parameters. Furthermore, the method shows significant advantages in recognition accuracy and algorithm complexity, over four main target recognition algorithms.
  • loading
  • [1]
    LI Jianqi, XU Yaqian, NIE Keheng, et al. PEDNet: A lightweight detection network of power equipment in infrared image based on YOLOv4-Tiny[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 5004312. doi: 10.1109/tim.2023.3235416.
    [2]
    XIA Changjie, REN Ming, WANG Bing, et al. Infrared thermography-based diagnostics on power equipment: State-of-the-art[J]. High Voltage, 2021, 6(3): 387–407. doi: 10.1049/hve2.12023.
    [3]
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal network[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 91–99.
    [4]
    OU Jianhua, WANG Jianguo, XUE Jian, et al. Infrared image target detection of substation electrical equipment using an improved faster R-CNN[J]. IEEE Transactions on Power Delivery, 2023, 38(1): 387–396. doi: 10.1109/tpwrd.2022.3191694.
    [5]
    王妤, 陈秀新, 袁和金. 基于改进Faster RCNN的变电站红外图像多目标识别[J]. 传感技术学报, 2021, 34(4): 522–530. doi: 10.3969/j.issn.1004-1699.2021.04.014.

    WANG Yu, CHEN Xiuxin, and YUAN Hejin. Multi-target recognition of substation infrared image based on improved Faster RCNN[J]. Chinese Journal of Sensors and Actuators, 2021, 34(4): 522–530. doi: 10.3969/j.issn.1004-1699.2021.04.014.
    [6]
    LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37. doi: 10.1007/978-3-319-46448-0_2.
    [7]
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 779–788. doi: 10.1109/CVPR.2016.91.
    [8]
    王旭红, 李浩, 樊绍胜, 等. 基于改进SSD的电力设备红外图像异常自动检测方法[J]. 电工技术学报, 2020, 35(S1): 302–310. doi: 10.19595/j.cnki.1000-6753.tces.l80426.

    WANG Xuhong, LI Hao, FAN Shaosheng, et al. Infrared image anomaly automatic detection method for power equipment based on improved single shot multi box detection[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 302–310. doi: 10.19595/j.cnki.1000-6753.tces.l80426.
    [9]
    谭宇璇, 樊绍胜. 基于图像增强与深度学习的变电设备红外热像识别方法[J]. 中国电机工程学报, 2021, 41(23): 7990–7997. doi: 10.13334/j.0258-8013.pcsee.202487.

    TAN Yuxuan and FAN Shaosheng. Infrared thermal image recognition of substation equipment based on image enhancement and deep learning[J]. Proceedings of the CSEE, 2021, 41(23): 7990–7997. doi: 10.13334/j.0258-8013.pcsee.202487.
    [10]
    王媛彬, 李媛媛, 段誉, 等. 基于轻量骨干网络和注意力结构的变电设备红外图像识别[J]. 电网技术, 2023, 47(10): 4358–4369. doi: 10.13335/j.1000-3673.pst.2022.2113.

    WANG Yuanbin, LI Yuanyuan, DUAN Yu, et al. Infrared image recognition of substation equipment based on lightweight backbone network and attention mechanism[J]. Power System Technology, 2023, 47(10): 4358–4369. doi: 10.13335/j.1000-3673.pst.2022.2113.
    [11]
    DUAN Kaiwen, BAI Song, XIE Lingxi, et al. CenterNet: Keypoint triplets for object detection[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 6568–6577. doi: 10.1109/iccv.2019.00667.
    [12]
    黄悦华, 杨楚睿, 陈晨, 等. 基于改进Centernet的变电设备红外检测方法[J]. 电子测量技术, 2023, 46(4): 142–148. doi: 10.19651/j.cnki.emt.2210406.

    HUANG Yuehua, YANG Churui, CHEN Chen, et al. Infrared detection method of substation equipment based on improved Centernet[J]. Electronic Measurement Technology, 2023, 46(4): 142–148. doi: 10.19651/j.cnki.emt.2210406.
    [13]
    ZHENG Hanbo, CUI Yaohui, FAN Xianhao, et al. An infrared image detection method of substation equipment combining Iresgroup structure and CenterNet[J]. IEEE Transactions on Power Delivery, 2022, 37(6): 4757–4765. doi: 10.1109/tpwrd.2022.3158818.
    [14]
    CHENG Xun and YU Jianbo. RetinaNet with difference channel attention and adaptively spatial feature fusion for steel surface defect detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 2503911. doi: 10.1109/tim.2020.3040485.
    [15]
    LI Yuancheng, ZHOU Shenglong, CHEN Hui, et al. Attention-based fusion factor in FPN for object detection[J]. Applied Intelligence, 2022, 52(13): 15547–15556. doi: 10.1007/s10489-022-03220-0.
    [16]
    NIU Zhaoyang, ZHONG Guoqiang, and YU Hui. A review on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452: 48–62. doi: 10.1016/j.neucom.2021.03.091.
    [17]
    谢雯, 王若男, 羊鑫, 等. 融合深度可分离卷积的多尺度残差UNet在PolSAR地物分类中的研究[J]. 电子与信息学报, 2023, 45(8): 2975–2985. doi: 10.11999/JEIT220867.

    XIE Wen, WANG Ruonan, YANG Xin, et al. Research on multi-scale residual UNet fused with depthwise separable convolution in PolSAR terrain classification[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2975–2985. doi: 10.11999/JEIT220867.
    [18]
    LI Feng, ZURADA J M, and WU Wei. Smooth group L1/2 regularization for input layer of feedforward neural networks[J]. Neurocomputing, 2018, 314: 109–119. doi: 10.1016/j.neucom.2018.06.046.
    [19]
    康守强, 杨佳轩, 王玉静, 等. 基于改进宽度模型迁移学习的不同负载下滚动轴承状态快速分类方法[J]. 电子与信息学报, 2023, 45(5): 1824–1832. doi: 10.11999/JEIT220401.

    KANG Shouqiang, YANG Jiaxuan, WANG Yujing, et al. A fast classification method of rolling bearing state under different loads based on improved broad model transfer learning[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1824–1832. doi: 10.11999/JEIT 220401.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (291) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return