Advanced Search
Volume 46 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
Wen Xinhui, Niu Mingji . THE ABS LEARNING ALGORITHM FOR RADIAL BASIS FUNCTIONAL NETWORK[J]. Journal of Electronics & Information Technology, 1996, 18(6): 601-606.
Citation: SHI Liqin, LIU Xuan, LU Guangyue. Research on Energy Consumption Minimization for a Data Compression Based NOMA-MEC System[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2888-2897. doi: 10.11999/JEIT231033

Research on Energy Consumption Minimization for a Data Compression Based NOMA-MEC System

doi: 10.11999/JEIT231033
Funds:  The National Natural Science Foundation of China (62301421)
  • Received Date: 2023-09-19
  • Rev Recd Date: 2024-03-15
  • Available Online: 2024-04-02
  • Publish Date: 2024-07-29
  • The system energy consumption minimization problem is studied for a data compression based Non-Orthogonal Multiple Access-Mobile Edge Computing (NOMA-MEC) system. Considering the partial compression and offloading schemes and the limited computation capacity at the base station, a system energy consumption minimization optimization problem is formulated by jointly optimizing the users’ data compression and offloading ratios, transmit power, data compression time, etc. In order to solve this problem, closed-form expression of each user’s optimal transmit power is firstly derived. Then the Successive Convex Approximation (SCA) method is used to approximate the non-convex constraints of the formulated problem, and An SCA based efficient iterative algorithm is proposed to solve the formulated problem, obtaining the optimal resource allocation scheme of the system. Finally, the simulation results verify the advantages of the proposed scheme via computer simulations and show that compared with other benchmark schemes, the proposed scheme can effectively reduce the system energy consumption.
  • [1]
    SONG Zhiyuan, MA Ruijiang, and XIE Yong. A collaborative task offloading strategy for mobile edge computing in internet of vehicles[C]. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 2021: 1379–1384. doi: 10.1109/IAEAC50856.2021.9390817.
    [2]
    SATRIA D, PARK D, and JO M. Recovery for overloaded mobile edge computing[J]. Future Generation Computer Systems, 2017, 70: 138–147. doi: 10.1016/j.future.2016.06.024.
    [3]
    PAN Yijin, CHEN Ming, YANG Zhaohui, et al. Energy-efficient NOMA-based mobile edge computing offloading[J]. IEEE Communications Letters, 2018, 23(2): 310–313. doi: 10.1109/LCOMM.2018.2882846.
    [4]
    ZHANG Siqi, YI Na, and MA Yi. Correlation-based device energy-efficient dynamic multi-task offloading for mobile edge computing[C]. 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 2021: 1–5. doi: 10.1109/VTC2021-Spring51267.2021.9448864.
    [5]
    GAO Mingjin, SHEN Rujing, LI Jun, et al. Computation offloading with instantaneous load billing for mobile edge computing[J]. IEEE Transactions on Services Computing, 2022, 15(3): 1473–1485. doi: 10.1109/TSC.2020.2996764.
    [6]
    HE Tianmi, WANG Dawei, ZHOU Fuhui, et al. Delay-aware offloading for cooperative NOMA-based near-and-far MEC networks[C]. 2021 IEEE/CIC International Conference on Communications in China (ICCC), Xiamen, China, 2021: 978–983. doi: 10.1109/ICCC52777.2021.9580414.
    [7]
    SHI Liqin, YE Yinghui, CHU Xiaoli, et al. Computation energy efficiency maximization for a NOMA-based WPT-MEC network[J]. IEEE Internet of Things Journal, 2021, 8(13): 10731–10744. doi: 10.1109/JIOT.2020.3048937.
    [8]
    REN Jinke, RUAN Yangjun, and YU Guanding. Data transmission in mobile edge networks: Whether and where to compress?[J]. IEEE Communications Letters, 2019, 23(3): 490–493. doi: 10.1109/LCOMM.2019.2894415.
    [9]
    XU Ding, LI Qun, and ZHU Hongbo. Energy-saving computation offloading by joint data compression and resource allocation for mobile-edge computing[J]. IEEE Communications Letters, 2019, 23(4): 704–707. doi: 10.1109/LCOMM.2019.2897630.
    [10]
    MHEICH Z and DUPRAZ E. Short length non-binary rate-adaptive LDPC codes for Slepian-Wolf source coding[C]. 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 2018: 1–5. doi: 10.1109/WCNC.2018.8377291.
    [11]
    LIU Chenglin. Predictor-based synchronization algorithms for multiple harmonic oscillators with communication delay[C]. 2015 IEEE International Conference on Information and Automation, Lijiang, China, 2015: 1003–1008. doi: 10.1109/ICInfA.2015.7279433.
    [12]
    GRANT M and BOYD S. CVX: Matlab software for disciplined convex programming[EB/OL]. http://cvxr.com/cvx, 2023.
    [13]
    BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2009: 104–112.
    [14]
    LUO Weiran, SHEN Yanyan, YANG Bo, et al. Joint 3-D trajectory and resource optimization in multi-UAV-enabled IoT networks with wireless power transfer[J]. IEEE Internet of Things Journal, 2021, 8(10): 7833–7848. doi: 10.1109/JIOT.2020.3041303.
  • Cited by

    Periodical cited type(8)

    1. 张云,姚慧雨,张倩,李高鹏. SAR抗转发式干扰波形设计与优化. 哈尔滨工业大学学报. 2024(09): 17-30 .
    2. 温镇铭,王国宏,张亮,于洪波. 基于正负频偏脉冲压缩相参积累的移频干扰鉴别方法. 电子与信息学报. 2023(08): 2936-2944 . 本站查看
    3. 张亮,王国宏,杨志国,张翔宇,李思文. 利用回波时频相关差异的雷达欺骗干扰识别方法. 西安交通大学学报. 2021(02): 136-142 .
    4. 张亮,王国宏,张翔宇,李思文,辛婷婷. LFM雷达对抗移频干扰方法研究. 电子学报. 2021(03): 510-517 .
    5. 罗雪平,曹运合,胡奇,陈术涛,闫士杰,蔡昔. SAR成像导引头干扰建模评估与仿真系统设计. 系统仿真学报. 2021(08): 1927-1937 .
    6. 王宏艳,降佳伟,蒲娟,吴彦鸿,冉达. 基于余弦幅度加权的低旁瓣多相位分段调制干扰方法. 系统工程与电子技术. 2021(11): 3185-3193 .
    7. 牛朝阳,王建涛,胡涛,刘伟,李润生. 极化合成孔径雷达有源干扰的干信比方程. 系统工程与电子技术. 2021(12): 3542-3551 .
    8. 周胜文,沙明辉,胡小春. 基于梳状谱调制和间歇采样重复转发的复合干扰. 系统工程与电子技术. 2021(12): 3495-3501 .

    Other cited types(7)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (294) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return