Citation: | LIU Xuefang, MAO Weihao, YANG Qinghai. A Resource Allocation Algorithm for Space-Air-Ground Integrated Network Based on Deep Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2831-2841. doi: 10.11999/JEIT231016 |
[1] |
钱志鸿, 田春生, 郭银景, 等. 智能网联交通系统的关键技术与发展[J]. 电子与信息学报, 2020, 42(1): 2–19. doi: 10.11999/JEIT190787.
QIAN Zhihong, TIAN Chunsheng, GUO Yinjing, et al. The key technology and development of intelligent and connected transportation system[J]. Journal of Electronics & Information Technology, 2020, 42(1): 2–19. doi: 10.11999/JEIT190787.
|
[2] |
QIU Chao, CHEN Zheyuan, REN Xiaoxu, et al. AImers-6G: AI-driven region-temporal resource provisioning for 6G immersive services[J]. IEEE Wireless Communications, 2023, 30(3): 196–203. doi: 10.1109/MWC.022.2200539.
|
[3] |
CASONI M, GRAZIA C A, KLAPEZ M, et al. Integration of satellite and LTE for disaster recovery[J]. IEEE Communications Magazine, 2015, 53(3): 47–53. doi: 10.1109/MCOM.2015.7060481.
|
[4] |
DING Xiang, WANG Xiaoqing, DOU Aixia, et al. The development of rapid earthquake disaster assessment system based on space-air-ground integrated earth observation[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 8456–8459. doi: 10.1109/IGARSS47720.2021.9553806.
|
[5] |
张晓凯, 郭道省, 张邦宁. 空天地一体化网络研究现状与新技术的应用展望[J]. 天地一体化信息网络, 2021, 2(4): 19–26. doi: 10.11959/j.issn.2096-8930.2021039.
ZHANG Xiaokai, GUO Daoxing, and ZHANG Bangning. Research status of space-air-ground integrated network and application prospects of new technologies[J]. Space-Integrated-Ground Information Networks, 2021, 2(4): 19–26. doi: 10.11959/j.issn.2096-8930.2021039.
|
[6] |
DAI Cuiqin, LUO Junfeng, FU Shu, et al. Dynamic user association for resilient backhauling in satellite–terrestrial integrated networks[J]. IEEE Systems Journal, 2020, 14(4): 5025–5036. doi: 10.1109/jsyst.2020.2980314.
|
[7] |
FERRÚS R, KOUMARAS H, SALLENT O, et al. SDN/NFV-enabled satellite communications networks: Opportunities, scenarios and challenges[J]. Physical Communication, 2016, 18: 95–112. doi: 10.1016/j.phycom.2015.10.007.
|
[8] |
CHENG Nan, HE Jingchao, YIN Zhisheng, et al. 6G service-oriented space-air-ground integrated network: A survey[J]. Chinese Journal of Aeronautics, 2022, 35(9): 1–18. doi: 10.1016/j.cja.2021.12.013.
|
[9] |
JIANG Weiwei. Software defined satellite networks: A survey[J]. Digital Communications and Networks, 2023, 9(6): 1243–1264. doi: 10.1016/j.dcan.2023.01.016.
|
[10] |
LI Junling, SHI Weisen, WU Huaqing, et al. Cost-aware dynamic SFC mapping and scheduling in SDN/NFV-enabled space-air-ground-integrated networks for internet of vehicles[J]. IEEE Internet of Things Journal, 2022, 9(8): 5824–5838. doi: 10.1109/JIOT.2021.3058250.
|
[11] |
GAO Xiangqiang, LIU Rongke, and KAUSHIK A. Service chaining placement based on satellite mission planning in ground station networks[J]. IEEE Transactions on Network and Service Management, 2021, 18(3): 3049–3063. doi: 10.1109/tnsm.2020.3045432.
|
[12] |
YANG Dan, LIU Jiang, ZHANG Ran, et al. Multi-constraint virtual network embedding algorithm for satellite networks[C]. GLOBECOM 2020 - 2020 IEEE Global Communications Conference, Taipei, China, 2020: 1–6. doi: 10.1109/globecom42002.2020.9347993.
|
[13] |
WANG Guangchao, ZHOU Sheng, ZHANG Shan, et al. SFC-based service provisioning for reconfigurable space-air-ground integrated networks[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(7): 1478–1489. doi: 10.1109/JSAC.2020.2986851.
|
[14] |
ALSHAROA A and ALOUINI M S. Improvement of the global connectivity using integrated satellite-airborne-terrestrial networks with resource optimization[J]. IEEE Transactions on Wireless Communications, 2020, 19(8): 5088–5100. doi: 10.1109/TWC.2020.2988917.
|
[15] |
华道本. 基于5G的低轨道卫星通信系统传输技术研究[D]. [硕士论文], 东南大学, 2019. doi: 10.27014/d.cnki.gdnau.2019.002673.
HUA Daoben. Research on transmission technology of low earth orbit satellite communication system based on 5G[D]. [Master dissertation], Southeast University, 2019. doi: 10.27014/d.cnki.gdnau.2019.002673.
|
[16] |
倪爽. 星地一体化网络接入与存储资源协同管控技术研究[D]. [硕士论文], 西安电子科技大学, 2021. doi: 10.27389/d.cnki.gxadu.2021.001600.
NI Shuang. Coordinated access and cache resource management technology in terrestrial-satellite integrated network[D]. [Master dissertation], Xidian University, 2021. doi: 10.27389/d.cnki.gxadu.2021.001600.
|
[17] |
陈新颖, 盛敏, 李博, 等. 面向6G的无人机通信综述[J]. 电子与信息学报, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789.
CHEN Xinying, SHENG Min, LI Bo, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics & Information Technology, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789.
|
[18] |
LI Qi, CAO Zehong, ZHONG Jiang, et al. Graph representation learning with encoding edges[J]. Neurocomputing, 2019, 361: 29–39. doi: 10.1016/j.neucom.2019.07.076.
|
[19] |
LIU Jianhua, WANG Xin, SHEN Shigen, et al. A bayesian Q-learning game for dependable task offloading against DDoS attacks in sensor edge cloud[J]. IEEE Internet of Things Journal, 2021, 8(9): 7546–7561. doi: 10.1109/JIOT.2020.3038554.
|
[20] |
LIU Jianhua, WANG Xin, SHEN Shigen, et al. Intelligent jamming defense using DNN stackelberg game in sensor edge cloud[J]. IEEE Internet of Things Journal, 2022, 9(6): 4356–4370. doi: 10.1109/JIOT.2021.3103196.
|
[21] |
ZHANG Peiying, ZHANG Yi, KUMAR N, et al. Deep reinforcement learning algorithm for latency-oriented IIoT resource orchestration[J]. IEEE Internet of Things Journal, 2023, 10(8): 7153–7163. doi: 10.1109/JIOT.2022.3229270.
|
[22] |
WANG Chao, LIU Lei, JIANG Chunxiao, et al. Incorporating distributed DRL into storage resource optimization of space-air-ground integrated wireless communication network[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(3): 434–446. doi: 10.1109/JSTSP.2021.3136027.
|
[23] |
JIANG Fan, ZHANG Lan, SUN Changyin, et al. Clustering and resource allocation strategy for D2D multicast networks with machine learning approaches[J]. China Communications, 2021, 18(1): 196–211. doi: 10.23919/jcc.2021.01.017.
|
[24] |
QIU Chao, YU F R, YAO Haipeng, et al. Blockchain-based software-defined industrial internet of things: A dueling deep Q-learning approach[J]. IEEE Internet of Things Journal, 2019, 6(3): 4627–4639. doi: 10.1109/jiot.2018.2871394.
|
[25] |
ZHANG Peiying, WANG Chao, JIANG Chunxiao, et al. Deep reinforcement learning assisted federated learning algorithm for data management of IIoT[J]. IEEE Transactions on Industrial Informatics, 2021, 17(12): 8475–8484. doi: 10.1109/tii.2021.3064351.
|
[26] |
李焜, 王喆. 无线通信电波传播模型的研究[J]. 无线通信技术, 2008, 17(1): 10–12. doi: 10.3969/j.issn.1003-8329.2008.01.003.
LI Kun and WANG Zhe. Research of wireless communications radio wave propagation model[J]. Wireless Communication Technology, 2008, 17(1): 10–12. doi: 10.3969/j.issn.1003-8329.2008.01.003.
|
[27] |
焦昆. TD-LTE链路预算研究[J]. 现代商贸工业, 2013, 25(16): 161–162.
JIAO Kun. Research on TD-LTE link budget[J]. Modern Business Trade Industry, 2013, 25(16): 161–162.
|
[28] |
宋树晨. LTE无线网络规划及其优化研究[D]. [硕士论文], 南京邮电大学, 2019.
SONG Shuchen. Research on LTE wireless network planning construction and optimization[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2019.
|
[29] |
于美, 朱一帆, 李加淳, 等. 基于澳大利亚山火的无人机调度问题[J]. 高等数学研究, 2023, 26(2): 31–34. doi: 10.3969/j.issn.1008-1399.2023.02.011.
YU Mei, ZHU Yifan, LI Jiachun, et al. UAV scheduling problems based on Australian bushfire[J]. Studies in College Mathematics, 2023, 26(2): 31–34. doi: 10.3969/j.issn.1008-1399.2023.02.011.
|
[30] |
MARAL G, BOUSQUET M, and SUN Zhili. Satellite Communications Systems: Systems, Techniques and Technology[M]. 6th ed. Hoboken: Wiley & Sons, 2020: 189–273. doi: 10.1002/9781119673811.
|
[31] |
3GPP TS 38.214. 5G NR, Physical layer procedures for data[S]. 2022.
|
[32] |
3GPP TS 36.133 Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements for support of radio resource management[S]. 2022.
|
[33] |
KIM M G and JO H S. Performance analysis of NB-IoT uplink in low earth orbit non-terrestrial networks[J]. Sensors, 2022, 22(18): 7097. doi: 10.3390/s22187097.
|
[34] |
MA Lin, JIN Ningdi, CUI Yang, et al. LTE user equipment RSRP difference elimination method using multidimensional scaling for LTE fingerprint-based positioning system[C]. 2017 IEEE International Conference on Communications (ICC), Paris, France, 2017: 1–6. doi: 10.1109/icc.2017.7997470.
|
[35] |
CHEN Fatang, LI Xiu, ZHANG Yun, et al. Design and implementation of initial cell search in 5G NR systems[J]. China Communications, 2020, 17(5): 38–49. doi: 10.23919/jcc.2020.05.005.
|
[36] |
3GPP TS 38.211 NR; Physical channels and modulation[S]. 2020.
|
[37] |
3GPP TS 36.214 Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer; measurements[S]. 2022.
|
[38] |
陈惠河. TD-LTE小区间干扰抑制技术研究[D]. [硕士论文], 吉林大学, 2013.
CHEN Huihe. Research on the technology of inter-cell interference control in TD-LTE[D]. [Master dissertation], Jilin University, 2013.
|
[39] |
VAN HASSELT H, GUEZ A, and SILVER D. Deep reinforcement learning with double Q-learning[C]. The 30th AAAI Conference on Artificial Intelligence, Phoenix, USA, 2022: 2094-2100. doi: 10.1609/aaai.v30i1.10295.
|
[40] |
WANG Ziyu, SCHAUL T, HESSEL M, et al. Dueling network architectures for deep reinforcement learning[C]. The 33rd International Conference on International Conference on Machine Learning, New York, USA, 2016: 1995–2003.
|
[41] |
DE SANTIS E, GIUSEPPI A, PIETRABISSA A, et al. Satellite integration into 5G: Deep reinforcement learning for network selection[J]. Machine Intelligence Research, 2022, 19(2): 127–137. doi: 10.1007/s11633-022-1326-3.
|
[42] |
彭代渊, 梁宏斌, 罗玉娇. 基于最大接收功率的异构蜂窝网络接入方法[P]. 中国, 106792893A, 2017.
PENG Daiyuan, LIANG Hongbin, and LUO Yujiao Heterogeneous cellular network access method based on maximum received power[P]. CN, 106792893A, 2017.
|
[43] |
姚继明, 郭经红, 张浩, 等. 基于功率优先级的电力LTE专网随机接入技术[J]. 电力系统自动化, 2016, 40(10): 127–131. doi: 10.7500/AEPS20150820005.
YAO Jiming, GUO Jinghong, ZHANG Hao, et al. Random access technology of electric dedicated LTE network based on power priority[J]. Automation of Electric Power Systems, 2016, 40(10): 127–131. doi: 10.7500/AEPS20150820005.
|
[44] |
王庆. 5G移动通信大量用户随机接入机制研究[D]. [硕士论文], 北京交通大学, 2018.
WANG Qing. Contention-based random access for massive connections in 5G[D]. [Master dissertation], Beijing Jiaotong University, 2018.
|
[45] |
MCPHAIL C, MAIER H R, KWAKKEL J H, et al. Robustness metrics: How are they calculated, when should they be used and why do they give different results?[S]. Earth’s Future, 2018, 6(2): 169–191. doi: 10.1002/2017EF000649.
|
[46] |
LEE K and LIM S. Minimax optimal bandits for heavy tail rewards[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 1–15. doi: 10.1109/tnnls.2022.3203035.
|