Advanced Search
Volume 46 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
WEI Wenbin, PENG Ruihui, SUN Dianxing, TAN Shuncheng, SONG Yingjuan, ZHANG Jialin. Active False Target Identification Method Based on Frequency Response Features Clustering in Multi-Coherent Processing Intervals[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2721-2731. doi: 10.11999/JEIT231012
Citation: WEI Wenbin, PENG Ruihui, SUN Dianxing, TAN Shuncheng, SONG Yingjuan, ZHANG Jialin. Active False Target Identification Method Based on Frequency Response Features Clustering in Multi-Coherent Processing Intervals[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2721-2731. doi: 10.11999/JEIT231012

Active False Target Identification Method Based on Frequency Response Features Clustering in Multi-Coherent Processing Intervals

doi: 10.11999/JEIT231012
Funds:  China Aerospace Science and Technology Corporation Stabilization Support Project (ZY0110020009), China Postdoctoral Science Foundation (2021M693003), The National Natural Science Foundation of China (61731023)
  • Received Date: 2023-09-18
  • Rev Recd Date: 2023-11-30
  • Available Online: 2023-12-06
  • Publish Date: 2024-07-29
  • Most of the existing intelligent algorithms for identifying real and false targets are based on supervised learning and perform poorly under a low signal-to-noise ratio. Considering the above problems, an unsupervised clustering identification method of real and false targets based on frequency response features in multi-Coherent Processing Intervals(CPIs) is proposed by using the variability and uniqueness of the scattering characteristics of real and false targets in multi-CPIs, respectively. Firstly, the real and false targets are windowed and truncated along the fast time dimension in the fast-slow time domain, and the fast-slow time domain frequency response features are extracted to construct a preliminary sample set. Then, the real and false targets are identified by a two-step recognition algorithm composed of an Agglomerative clustering and a feature fusion network. Finally, a multi-CPI joint decision method is proposed to improve the recognition performance and reliability. It is proved by simulation and measured data that the proposed method can effectively identify real targets and multiple active false targets.
  • loading
  • [1]
    温镇铭, 王国宏, 张亮, 等. 基于正负频偏脉冲压缩相参积累的移频干扰鉴别方法[J]. 电子与信息学报, 2023, 45(8): 2936–2944. doi: 10.11999/JEIT220873.

    WEN Zhenming, WANG Guohong, ZHANG Liang, et al. Frequency-shift jamming identification methods based on positive and negative frequency shift pulse compression coherent integration[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2936–2944. doi: 10.11999/JEIT220873.
    [2]
    张洋, 位寅生, 于雷. 抗主瓣多假目标欺骗干扰EPC-MIMO波形自适应优化设计技术[J]. 电子学报, 2022, 50(3): 513–523. doi: 10.12263/DZXB.20210329.

    ZHANG Yang, WEI Yinsheng, and YU Lei. Adaptive optimization design technology of EPC-MIMO waveform against mainlobe multiple false targets deception jamming[J]. Acta Electronica Sinica, 2022, 50(3): 513–253. doi: 10.12263/DZXB.20210329.
    [3]
    王国宏, 孙殿星, 白杰, 等. 基于预估-反馈联合处理的射频噪声干扰抑制算法[J]. 航空学报, 2018, 39(3): 321500. doi: 10.7527/ S1000-6893.2017.21500.

    WANG Guohong, SUN Dianxing, BAI Jie, et al. Radio frequency noise interference suppression based on estimation-feedback integration[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3): 321500. doi: 10.7527/S1000-6893.2017.21500.
    [4]
    孙闽红, 丁辰伟, 张树奇, 等. 基于统计相关差异的多基地雷达拖引欺骗干扰识别[J]. 电子与信息学报, 2020, 42(12): 2992–2998. doi: 10.11999/JEIT190634.

    SUN Minhong, DING Chenwei, ZHANG Shuqi, et al. Recognition of deception jamming based on statistical correlation difference in a multistatic radar system[J]. Journal of Electronics & Information Technology, 2020, 42(12): 2992–2998. doi: 10.11999/JEIT190634.
    [5]
    WU Qihua, ZHAO Feng, AI Xiaofeng, et al. Two-dimensional blanket jamming against ISAR using Nonperiodic ISRJ[J]. IEEE Sensors Journal, 2019, 19(11): 4031–4038. doi: 10.1109/JSEN.2019.2897363.
    [6]
    ZHOU Hongping, DONG Chengcheng, WU Ruowu, et al. Feature fusion based on bayesian decision theory for radar deception jamming recognition[J]. IEEE Access, 2021, 9: 16296–16304. doi: 10.1109/ACCESS.2021.3052506.
    [7]
    XU Chang, YU Lei, WEI Yinsheng, et al. Research on active jamming recognition in complex electromagnetic environment[C]. 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 2019: 1–5. doi: 10.1109/ICSIDP47821.2019.9173455.
    [8]
    HAO Zhimei, YU Wen, and CHEN Wei. Recognition method of dense false targets jamming based on time-frequency atomic decomposition[J]. The Journal of Engineering, 2019, 2019(20): 6354–6358. doi: 10.1049/joe.2019.0147.
    [9]
    SU Detao and GAO Meiguo. Research on jamming recognition technology based on characteristic parameters[C]. 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP), Nanjing, China, 2020: 303–307. doi: 10.1109/ICSIP49896.2020.9339393.
    [10]
    周红平, 王子伟, 郭忠义. 雷达有源干扰识别算法综述[J]. 数据采集与处理, 2022, 37(1): 1–20. doi: 10.16337/j.1004-9037.2022.01.001.

    ZHOU Hongping, WANG Ziwei, and GUO Zhongyi. Overview on recognition algorithms of radar active jamming[J]. Journal of Data Acquisition and Processing, 2022, 37(1): 1–20. doi: 10.16337/j.1004-9037.2022.01.001.
    [11]
    BHATTI F A, KHAN M J, SELIM A, et al. Shared spectrum monitoring using deep learning[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(4): 1171–1185. doi: 10.1109/TCCN.2021.3071149.
    [12]
    韦文斌, 彭锐晖, 孙殿星, 等. 基于频响特性的大起伏密集假目标干扰识别技术[J]. 兵工学报, 2023, 44(10): 3204–3217. doi: 10.12382/bgxb.2022.0610.

    WEI Wenbin, PENG Ruihui, SUN Dianxing, et al. Recognition of dense false target jamming with large fluctuations using frequency response characteristics[J]. Acta Armamentarii, 2023, 44(10): 3204–3217. doi: 10.12382/bgxb.2022.0610.
    [13]
    LIU Qiang and ZHANG Wei. Deep learning and recognition of radar jamming based on CNN[C]. 2019 12th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 2019: 208–212. doi: 10.1109/ISCID.2019.00054.
    [14]
    LV Qinzhe, QUAN Yinghui, FENG Wen, et al. Radar deception jamming recognition based on weighted ensemble CNN with transfer learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5107511. doi: 10.1109/TGRS.2021.3129645.
    [15]
    张顺生, 陈爽, 陈晓莹, 等. 面向小样本的多模态雷达有源欺骗干扰识别方法[J]. 雷达学报, 2023, 12(4): 882–891. doi: 10.12000/JR23104.

    ZHANG Shunsheng, CHEN Shuang, CHEN Xiaoying, et al. Active deception jamming recognition method in multimodal radar based on small samples[J]. Journal of Radars, 2023, 12(4): 882–891. doi: 10.12000/JR23104.
    [16]
    LIU Jin, HE Siyuan, ZHANG Lei, et al. An automatic and forward method to establish 3-D parametric scattering center models of complex targets for target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(12): 8701–8716. doi: 10.1109/TGRS.2020.2989856.
    [17]
    PENG Ruihui, WEI Wenbin, SUN Dianxing, et al. A positive-unlabeled radar false target recognition method based on frequency response features[J]. IEEE Signal Processing Letters, 2023, 30: 1067–1071. doi: 10.1109/LSP.2023.3305192.
    [18]
    DAI Fengzhou, LIU Jiang, TIAN Long, et al. An end-to-end approach for rigid-body target micro-Doppler analysis based on the asymmetrical autoencoding network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1–19. doi: 10.1109/TGRS.2023.3255863.
    [19]
    FISHER P O and AL-SARAWI S F. An optimized segmented quasi-memoryless nonlinear behavioral modeling approach for RF power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(1): 294–305. doi: 10.1109/TMTT.2017.2723010.
    [20]
    邢孟道, 王彤, 李真芳, 等. 雷达信号处理基础[M]. 北京: 电子工业出版社, 2008: 143–144.

    XING Mengdao, WANG Tong, LI Zhenfang, et al. Fundamentals of Radar Signal Processing[M]. Beijing: Publishing House of Electronics Industry, 2008: 143–144.
    [21]
    SUN Kun and TAO Wenbing. A constrained radial agglomerative clustering algorithm for efficient structure from motion[J]. IEEE Signal Processing Letters, 2018, 25(7): 1089–1093. doi: 10.1109/LSP.2018.2839022.
    [22]
    YU Zhengyang, TANG Jianlong, and WANG Zhao. GCPS: A CNN performance evaluation criterion for radar signal intrapulse modulation recognition[J]. IEEE Communications Letters, 2021, 25(7): 2290–2294. doi: 10.1109/LCOMM.2021.3070151.
    [23]
    WEI Shunjun, QU Qizhe, ZENG Xiangfeng, et al. Self-attention Bi-LSTM networks for radar signal modulation recognition[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(11): 5160–5172. doi: 10.1109/TMTT.2021.3112199.
    [24]
    PAN Mian, JIANG Jie, KONG Qingpeng, et al. Radar HRRP target recognition based on t-SNE segmentation and discriminant deep belief network[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1609–1613. doi: 10.1109/LGRS.2017.2726098.
    [25]
    孙殿星, 陈翔, 万建伟, 等. 基于多特征的密集假目标干扰融合识别与抑制[J]. 系统工程与电子技术, 2018, 40(10): 2207–2215. doi: 10.3969/j.issn.1001-506X.2018.10.08.

    SUN Dianxing, CHEN Xiang, WAN Jianwei, et al. Fusion identification and suppression technique against concentrated false targets jamming based on multiple features[J]. Systems Engineering and Electronics, 2018, 40(10): 2207–2215. doi: 10.3969/j.issn.1001-506X.2018.10.08.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(7)

    Article Metrics

    Article views (265) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return