Advanced Search
Volume 46 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
ZHAO Haoqin, DUAN Guodong, SI Jiangbo, HUANG Rui, SHI Jia. Research on Intelligent Spectrum Allocation Techniques for Incomplete Electromagnetic Information[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2694-2702. doi: 10.11999/JEIT231005
Citation: ZHAO Haoqin, DUAN Guodong, SI Jiangbo, HUANG Rui, SHI Jia. Research on Intelligent Spectrum Allocation Techniques for Incomplete Electromagnetic Information[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2694-2702. doi: 10.11999/JEIT231005

Research on Intelligent Spectrum Allocation Techniques for Incomplete Electromagnetic Information

doi: 10.11999/JEIT231005
Funds:  The Electromagnetic Space Warfare and Applications Key Laboratory Foundation (JJ2021-001), The National Natural Science Foundation of China (62425103)
  • Received Date: 2023-09-15
  • Rev Recd Date: 2024-04-24
  • Available Online: 2024-05-15
  • Publish Date: 2024-07-29
  • To solve the problem of low spectrum utilization of multi-node autonomous frequency decision-making in the dynamic electromagnetic countermeasure environment, the research on intelligent cooperative spectrum allocation technology for in complete electromagnetic information is carried out, which improves spectrum utilization through multi-node intelligent collaboration. Firstly, the spectrum allocation problem is modelled as an optimization problem to maximize the frequency-using equipment, and secondly, a resource decision-making algorithm based on the multi-node cooperative diversion experience repetition mechanism (Cooperation- Deep double Q-network, Co-DDQN) is proposed. This algorithm evaluates the historical experience data based on the cooperative diversion function and is trained by a hierarchical experience pool, so that each agent can form a lightweight cooperative decision-making ability under self-observation, and solve the problem of inconsistency between the optimization direction of multi-node decision-making and the overall optimization goal under low-visibility conditions. Besides, a hybrid reward function based on confidence allocation is designed, and each node considers itself when the decision is made, which can reduce the emergence of lazy nodes, explore a better overall action strategy, and further improve the system efficiency. Simulation results show that when the number of nodes is 20, the number of accessible devices of the proposed algorithm outperforms the global greedy algorithm and the genetic algorithm, and the difference with the centralized spectrum allocation algorithm with complete information sharing is within 5%, which is more suitable for cooperative spectrum allocation of low-visibility nodes.
  • loading
  • [1]
    王沙飞, 鲍雁飞, 李岩. 认知电子战体系结构与技术[J]. 中国科学: 信息科学, 2018, 48(12): 1603–1613. doi: 10.1360/N112018- 00153.

    WANG Shafei, BAO Yanfei, and LI Yan. The architecture and technology of cognitive electronic warfare[J]. SCIENTIA SINICA Informationis, 2018, 48(12): 1603–1613. doi: 10.1360/N112018-00153.
    [2]
    唐建强, 李昊. 美军电磁战斗管理发展分析[J]. 电子信息对抗技术, 2020, 35(2): 39–43. doi: 10.3969/j.issn.1674-2230.2020.02.010.

    TANG Jianqiang and LI Hao. The analysis of electromagnetic battle management in US[J]. Electronic Information Warfare Technology, 2020, 35(2): 39–43. doi: 10.3969/j.issn.1674-2230.2020.02.010.
    [3]
    刘辉, 颜飙, 陈永丽. 基于超图的D2D多对多资源分配方案[J]. 计算机工程与设计, 2018, 39(12): 3605–3609,3621. doi: 10.16208/j.issn1000-7024.2018.12.002.

    LIU Hui, YAN Biao, and CHEN Yongli. Many-to-many resource allocation scheme for D2D based on hypergraph[J]. Computer Engineering and Design, 2018, 39(12): 3605–3609,3621. doi: 10.16208/j.issn1000-7024.2018.12.002.
    [4]
    蔡畅, 王亚芳, 苗兵梅, 等. 基于改进遗传算法的认知无线传感网动态频谱分配方案[J]. 电信科学, 2017, 33(8): 85–93. doi: 10.11959/j.issn.1000-0801.2017217.

    CAI Chang, WANG Yafang, MIAO Bingmei, et al. Dynamic spectrum allocation for cognitive radio sensor networks based on improved genetic algorithm[J]. Telecommunications Science, 2017, 33(8): 85–93. doi: 10.11959/j.issn.1000-0801.2017217.
    [5]
    HUANG Jun, XING Congcong, QIAN Yi, et al. Resource allocation for multicell device-to-device communications underlaying 5G networks: A game-theoretic mechanism with incomplete information[J]. IEEE Transactions on Vehicular Technology, 2018, 67(3): 2557–2570. doi: 10.1109/TVT.2017.2765208.
    [6]
    YANG Helin, ZHAO Jun, LAM K Y, et al. Distributed deep reinforcement learning-based spectrum and power allocation for heterogeneous networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 6935–6948. doi: 10.1109/TWC.2022.3153175.
    [7]
    SI Jiangbo, HUANG Rui, LI Zan, et al. When spectrum sharing in cognitive networks meets deep reinforcement learning: Architecture, fundamentals, and challenges[J]. IEEE Network, 2024, 38(1): 187–195. doi: 10.1109/MNET.130.2200390.
    [8]
    MENG Fan, CHEN Peng, WU Lenan, et al. Power allocation in multi-user cellular networks: Deep reinforcement learning approaches[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6255–6267. doi: 10.1109/TWC.2020.3001736.
    [9]
    赵浩钦, 杨政, 司江勃, 等. 一种聚类辅助的智能频谱分配技术研究[J]. 西安电子科技大学学报, 2023, 50(6): 1–12. doi: 10.19665/j.issn1001-2400.20231006.

    ZHAO Haoqin, YANG Zheng, SI Jiangbo, et al. Research on a clustering-assisted intelligent spectrum allocation technique[J]. Journal of Xidian University, 2023, 50(6): 1–12. doi: 10.19665/j.issn1001-2400.20231006.
    [10]
    王涵, 俞扬, 姜远. 基于通信的多智能体强化学习进展综述[J]. 中国科学: 信息科学, 2022, 52(5): 742–764. doi: 10.1360/SSI-2020-0180.

    WANG Han, YU Yang, and JIANG Yuan. Review of the progress of communication-based multi-agent reinforcement learning[J]. SCIENTIA SINICA Informationis, 2022, 52(5): 742–764. doi: 10.1360/SSI-2020-0180.
    [11]
    TAN Junjie, LIANG Yingchang, ZHANG Lin, et al. Deep reinforcement learning for joint channel selection and power control in D2D networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(2): 1363–1378. doi: 10.1109/TWC.2020.3032991.
    [12]
    YIN Ziyan, LIN Yan, ZHANG Yijin, et al. Collaborative multiagent reinforcement learning aided resource allocation for UAV anti-Jamming communication[J]. IEEE Internet of Things Journal, 2022, 9(23): 23995–24008. doi: 10.1109/JIOT.2022.3188833.
    [13]
    窦慧, 张凌茗, 韩峰, 等. 卷积神经网络的可解释性研究综述[J]. 软件学报, 2024, 35(1): 159–184. doi: 10.13328/j.cnki.jos.006758.

    DOU Hui, ZHANG Lingming, HAN Feng, et al. Survey on convolutional neural network interpretability[J]. Journal of Software, 2024, 35(1): 159–184. doi: 10.13328/j.cnki.jos.006758.
    [14]
    肖博, 霍凯, 刘永祥. 雷达通信一体化研究现状与发展趋势[J]. 电子与信息学报, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515.

    XIAO Bo, HUO Kai, and LIU Yongxiang. Development and prospect of radar and communication integration[J]. Journal of Electronics & Information Technology, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515.
    [15]
    TANG Qinqin, XIE Renchao, YU F R, et al. Decentralized computation offloading in IoT fog computing system with energy harvesting: A Dec-POMDP approach[J]. IEEE Internet of Things Journal, 2020, 7(6): 4898–4911. doi: 10.1109/JIOT.2020.2971323.
    [16]
    VAN HASSELT H, GUEZ A, and SILVER D. Deep reinforcement learning with double Q-learning[C]. The 30th AAAI Conference on Artificial Intelligence, Phoenix, USA, 2016: 2094–2100. doi: 10.5555/3016100.3016191.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (362) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return