Citation: | HAO Shuang, HE Yupeng, CHEN Jiyao, WANG Zheng. Formation Path-following Control of Multi-snake Robots[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2981-2993. doi: 10.11999/JEIT231004 |
[1] |
LI Dongfang, ZHANG Binxin, XIU Yang, et al. Snake robots play an important role in social services and military needs[J]. The Innovation, 2022, 3(6): 100333. doi: 10.1016/j.xinn.2022.100333.
|
[2] |
朱威, 郭宪, 方勇纯, 等. 可重构模块化蛇形机器人研制及多运动模态研究[J]. 信息与控制, 2020, 49(1): 69–77. doi: 10.13976/j.cnki.xk.2020.9481.
ZHU Wei, GUO Xian, FANG Yongchun, et al. Development of a reconfigurable modular snake-like robot and research on multiple motion modes[J]. Information and Control, 2020, 49(1): 69–77. doi: 10.13976/j.cnki.xk.2020.9481.
|
[3] |
LI Dongfang, DENG Hongbin, PAN Zhenhua, et al. Collaborative obstacle avoidance algorithm of multiple bionic snake robots in fluid based on IB-LBM[J]. ISA Transactions, 2022, 122: 271–280. doi: 10.1016/j.isatra.2021.04.048.
|
[4] |
WANG Xiangyu, LIU Weiming, WU Quanwei, et al. A modular optimal formation control scheme of multiagent systems with application to multiple mobile robots[J]. IEEE Transactions on Industrial Electronics, 2022, 69(9): 9331–9341. doi: 10.1109/TIE.2021.3114732.
|
[5] |
TAKAOKA S, YAMADA H, and HIROSE S. Snake-like active wheel robot ACM-R4.1 with joint torque sensor and limiter[C]. The 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, USA, 2011: 1081–1086. doi: 10.1109/IROS.2011.6094475.
|
[6] |
陈培民, 王汝贵, 李欣蓬. 蛇形机器人平面-空间运动步态规划[J]. 机械设计与研究, 2022, 38(6): 34–39,45. doi: 10.13952/j.cnki.jofmdr.2022.0203.
CHEN Peimin, WANG Rugui, and LI Xinpeng. Planar-space motion gait planning of snake robot[J]. Machine Design and Research, 2022, 38(6): 34–39,45. doi: 10.13952/j.cnki.jofmdr.2022.0203.
|
[7] |
郁树梅, 马书根, 李斌, 等. 蛇形机器人步态产生及步态分析[J]. 机器人, 2011, 33(3): 371–378. doi: 10.3724/SP.J.1218.2011.00371.
YU Shumei, MA Shugen, LI Bin, et al. Gait generation and analysis for snake-like robots[J]. Robot, 2011, 33(3): 371–378. doi: 10.3724/SP.J.1218.2011.00371.
|
[8] |
ZHAO Wei, WANG Jiangbei, and FEI Yanqiong. A multigait continuous flexible snake robot for locomotion in complex terrain[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(5): 3751–3761. doi: 10.1109/TMECH.2021.3131766.
|
[9] |
LIU Xiongding, LIN Guangjie, and WEI Wu. Adaptive transition gait planning of snake robot based on polynomial interpolation method[J]. Actuators, 2022, 11(8): 222. doi: 10.3390/act11080222.
|
[10] |
REZAPOUR E, PETTERSEN K Y, LILJEBÄCK P, et al. Path following control of planar snake robots using virtual holonomic constraints: Theory and experiments[J]. Robotics and Biomimetics, 2014, 1(1): 3. doi: 10.1186/s40638-014-0003-6.
|
[11] |
REZAPOUR E, HOFMANN A, PETTERSEN K Y, et al. Virtual holonomic constraint based direction following control of planar snake robots described by a simplified model[C]. IEEE Conference on Control Applications, Juan Les Antibes, France, 2014: 1064–1071. doi: 10.1109/CCA.2014.6981476.
|
[12] |
KELASIDI E, LILJEBACK P, PETTERSEN K Y, et al. Integral line-of-sight guidance for path following control of underwater snake robots: Theory and experiments[J]. IEEE Transactions on Robotics, 2017, 33(3): 610–628. doi: 10.1109/TRO.2017.2651119.
|
[13] |
KELASIDI E, MOE S, PETTERSEN K Y, et al. Path following, obstacle detection and obstacle avoidance for thrusted underwater snake robots[J]. Frontiers in Robotics and AI, 2019, 6: 57. doi: 10.3389/frobt.2019.00057.
|
[14] |
张丹凤, 李斌, 常健. 基于角度对称性调节的蛇形机器人路径跟随方法[J]. 机器人, 2019, 41(6): 788–794,833. doi: 10.13973/j.cnki.robot.180768.
ZHANG Danfeng, LI Bin, and CHANG Jian. Path following method for snake robot based on the angle symmetry adjustment[J]. Robot, 2019, 41(6): 788–794,833. doi: 10.13973/j.cnki.robot.180768.
|
[15] |
CAO Zhengcai, ZHANG Dong, HU Biao, et al. Adaptive path following and locomotion optimization of snake-like robot controlled by the central pattern generator[J]. Complexity, 2019, 2019: 8030374. doi: 10.1155/2019/8030374.
|
[16] |
ZHANG Dong, YUAN Hao, and CAO Zhengcai. Environmental adaptive control of a snake-like robot with variable stiffness actuators[J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7(3): 745–751. doi: 10.1109/JAS.2020.1003144.
|
[17] |
LI Dongfang, PAN Zhenhua, DENG Hongbin, et al. Adaptive path following controller of a multijoint snake robot based on the improved serpenoid curve[J]. IEEE Transactions on Industrial Electronics, 2022, 69(4): 3831–3842. doi: 10.1109/TIE.2021.3075851.
|
[18] |
李东方, 杨弘晟, 邓宏彬, 等. 蛇形机器人跟踪误差预测的自适应轨迹跟踪控制器[J]. 仪器仪表学报, 2021, 42(11): 267–278. doi: 10.19650/j.cnki.cjsi.J2108438.
LI Dongfang, YANG Hongsheng, DENG Hongbin, et al. Adaptive trajectory tracking controller for snake robot tracking error prediction[J]. Chinese Journal of Scientific Instrument, 2021, 42(11): 267–278. doi: 10.19650/j.cnki.cjsi.J2108438.
|
[19] |
REZAPOUR E, PETTERSEN K Y, GRAVDAHL J T, et al. Formation control of underactuated bio-inspired snake robots[J]. Artificial Life and Robotics, 2016, 21(3): 282–294. doi: 10.1007/s10015-016-0297-2.
|
[20] |
HUANG Zipeng, BAUER R, and PAN Yajun. Event-triggered formation tracking control with application to multiple mobile robots[J]. IEEE Transactions on Industrial Electronics, 2023, 70(1): 846–854. doi: 10.1109/TIE.2022.3146582.
|
[21] |
DAI Shilu, HE Shude, LIN Hai, et al. Platoon formation control with prescribed performance guarantees for USVs[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5): 4237–4246. doi: 10.1109/TIE.2017.2758743.
|
[22] |
DAI Shilu, HE Shude, CHEN Xin, et al. Adaptive leader–follower formation control of nonholonomic mobile robots with prescribed transient and steady-state performance[J]. IEEE Transactions on Industrial Informatics, 2020, 16(6): 3662–3671. doi: 10.1109/TII.2019.2939263.
|
[23] |
CHEN B S, WANG Chunping, and LEE M Y. Stochastic robust team tracking control of multi-UAV networked system under Wiener and Poisson random fluctuations[J]. IEEE Transactions on Cybernetics, 2021, 51(12): 5786–5799. doi: 10.1109/TCYB.2019.2960104.
|
[24] |
黄兵, 肖云飞, 冯元, 等. 无人艇全分布式动态事件触发编队控制[J]. 控制理论与应用, 2023, 40(8): 1479–1487. doi: 10.7641/CTA.2022.11067.
HUANG Bing, XIAO Yunfei, FENG Yuan, et al. Fully distributed dynamic event-triggered formation control for multiple unmanned surface vehicles[J]. Control Theory & Applications, 2023, 40(8): 1479–1487. doi: 10.7641/CTA.2022.11067.
|
[25] |
TAKEUCHI S. Some double-angle formulas related to a generalized lemniscate function[J]. The Ramanujan Journal, 2021, 56(2): 753–761. doi: 10.1007/s11139-021-00395-x.
|
[26] |
王芳, 高雅丽, 张政, 等. 输出误差约束下四旋翼无人机预定性能反步控制[J]. 控制与决策, 2021, 36(5): 1059–1068. doi: 10.13195/j.kzyjc.2019.1249.
WANG Fang, GAO Yali, ZHANG Zheng, et al. Prescribed performance backstepping control for quadrotor UAV with output error constraint[J]. Control and Decision, 2021, 36(5): 1059–1068. doi: 10.13195/j.kzyjc.2019.1249.
|
[27] |
ZERAICK MONTEIRO N and RODRIGUES MAZORCHE S. Limitations and applications in a fractional Barbalat’s Lemma[J]. Fractional Calculus and Applied Analysis, 2023, 26(1): 253–275. doi: 10.1007/s13540-022-00111-6.
|
[28] |
李新凯, 张宏立, 范文慧. 基于时变障碍李雅普诺夫函数的变体无人机有限时间控制[J]. 自动化学报, 2022, 48(8): 2062–2074. doi: 10.16383/j.aas.c200712.
LI Xinkai, ZHANG Hongli, and FAN Wenhui. Finite-time control for morphing aerospace vehicle based on time-varying barrier Lyapunov function[J]. Acta Automatica Sinica, 2022, 48(8): 2062–2074. doi: 10.16383/j.aas.c200712.
|
[29] |
TANWAR D V, KUMAR M, and TIWARI A K. Lie symmetries, invariant solutions and phenomena dynamics of Boiti–Leon–pempinelli system[J]. Physica Scripta, 2022, 97(7): 075209. doi: 10.1088/1402-4896/ac76eb.
|
[30] |
SUN Wenbing and LIU Qiong. Hadamard type local fractional integral inequalities for generalized harmonically convex functions and applications[J]. Mathematical Methods in the Applied Sciences, 2020, 43(9): 5776–5787. doi: 10.1002/mma.6319.
|