Advanced Search
Volume 46 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
LIU Yingting, ZHOU Zhiyang, GENG Mengdan, LI Xingwang. Outage Performance of Tag Selection Scheme for Backscatter Communication Systems[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2401-2408. doi: 10.11999/JEIT231001
Citation: LIU Yingting, ZHOU Zhiyang, GENG Mengdan, LI Xingwang. Outage Performance of Tag Selection Scheme for Backscatter Communication Systems[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2401-2408. doi: 10.11999/JEIT231001

Outage Performance of Tag Selection Scheme for Backscatter Communication Systems

doi: 10.11999/JEIT231001
Funds:  The Natural Science Foundation of Gansu Province (23JRRA849), The National Natural Science Foundation of China (61861041), The Science and Technology Research Project of Henan Province (232102211073), Gansu Postdoctoral Research Funding Project, The Youth Doctoral Support Project of Gansu Provincial Department of Education (2024QB-045)
  • Received Date: 2023-09-14
  • Rev Recd Date: 2023-12-11
  • Available Online: 2023-12-18
  • Publish Date: 2024-06-30
  • The considered Backscatter Communication (BackCom) system consists of one dedicated radio frequency source node, some tags and one destination node. In consideration of the Channel Estimation Error (CEE), the tag selection scheme in which the tag selection scheme that can maximize the received Signal-to-Noise Ratio (SNR) at the destination is proposed over the Nakagami-m channels, and the corresponding analytical results of the outage probability and diversity gain are derived. In this paper, the consumed power by tags is considered. The numerical results verify the obtained analytical results and investigate the key parameters on the system performance. Both the analytical and numerical results show that the existence of the CEE make the corresponding diversity gain zero.
  • loading
  • [1]
    VAN HUYNH N, HOANG D T, LU Xiao, et al. Ambient backscatter communications: A contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2889–2922. doi: 10.1109/COMST.2018.2841964.
    [2]
    SONG Chaoyun, DING Yuan, EID A, et al. Advances in wirelessly powered backscatter communications: From Antenna/RF circuitry design to printed flexible electronics[J]. Proceedings of the IEEE, 2022, 110(1): 171–192. doi: 10.1109/JPROC.2021.3125285.
    [3]
    DENG Dan, LI Xingwang, DANG Shuping, et al. Outage analysis for tag selection in reciprocal backscatter communication systems[J]. IEEE Wireless Communications Letters, 2022, 11(2): 210–214. doi: 10.1109/LWC.2021.3122429.
    [4]
    YE Yinghui, SHI Liqin, CHU Xiaoli, et al. On the outage performance of ambient backscatter communications[J]. IEEE Internet of Things Journal, 2020, 7(8): 7265–7278. doi: 10.1109/JIOT.2020.2984449.
    [5]
    MURATKAR T S, BHURANE A, SHARMA P K, et al. Analysis of multi-tag ambient backscatter communication under time-selective fading[J]. IEEE Communications Letters, 2022, 26(1): 40–43. doi: 10.1109/LCOMM.2021.3126660.
    [6]
    LIU Yingting, YE Yinghui, and HU R Q. Secrecy outage probability in backscatter communication systems with tag selection[J]. IEEE Wireless Communications Letters, 2021, 10(10): 2190–2194. doi: 10.1109/LWC.2021.3095969.
    [7]
    LI Dong, PENG Wei, and HU Fengye. Capacity of backscatter communication systems with tag selection[J]. IEEE Transactions on Vehicular Technology, 2019, 68(10): 10311–10314. doi: 10.1109/TVT.2019.2936648.
    [8]
    GU Bowen, LI Dong, LIU Ye, et al. Exploiting constructive interference for backscatter communication systems[J]. IEEE Transactions on Communications, 2023, 71(7): 4344–4359. doi: 10.1109/TCOMM.2023.3277519.
    [9]
    LI Dong. Fairness-based multiuser scheduling for ambient backscatter communication systems[J]. IEEE Wireless Communications Letters, 2020, 9(8): 1150–1154. doi: 10.1109/LWC.2020.2982645.
    [10]
    YANG Nan, ELKASHLAN M, YEOH P L, et al. Multiuser MIMO relay networks in Nakagami-m fading channels[J]. IEEE Transactions on Communications, 2012, 60(11): 3298–3310. doi: 10.1109/TCOMM.2012.081412.110463.
    [11]
    LIU Zhipeng, YE Yinghui, CHU Xiaoli, et al. Secrecy performance of backscatter communications with multiple self-powered tags[J]. IEEE Communications Letters, 2022, 26(12): 2875–2879. doi: 10.1109/LCOMM.2022.3201031.
    [12]
    LI Xingwang, ZHENG Yike, ZENG Ming, et al. Enhancing secrecy performance for STAR-RIS NOMA networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(2): 2684–2688. doi: 10.1109/TVT.2022.3213334.
    [13]
    LIU Yingting, MA Jiaxiu, YE Yinghui, et al. Outage performance of BackCom systems with multiple self-powered tags under channel estimation error[J]. IEEE Communications Letters, 2022, 26(7): 1548–1552. doi: 10.1109/LCOMM.2022.3164453.
    [14]
    SHUKLA M K, YADAV S, and PUROHIT N. Cellular multiuser two-way relay network with cochannel interference and channel estimation error: Performance analysis and optimization[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3431–3446. doi: 10.1109/TVT.2017.2786308.
    [15]
    FAN Yijia, ADINOYI A, THOMPSON J S, et al. A simple distributed antenna processing scheme for cooperative diversity[J]. IEEE Transactions on Communications, 2009, 57(3): 626–629. doi: 10.1109/TCOMM.2009.03.070081.
    [16]
    JEFFREY A and ZWILLINGER D. Table of Integrals, Series, and Products[M]. 7th ed. London, U. K. : Academic Press, 2007: 1–1221.
    [17]
    OLVER F W J, LOZIER D W, BOISVERT R F, et al. Nist digital library of mathematical functions[EB/OL]. http://dlmf.nist.gov, 2023.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (299) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return