Advanced Search
Volume 46 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
YANG Helin, ZHENG Mengting, LIU Shuai, XIAO Liang, XIE Xianzhong, XIONG Zehui. Intelligent Weighted Energy Consumption and Delay Optimization for UAV-Assisted MEC Under Malicious Jamming[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2879-2887. doi: 10.11999/JEIT230986
Citation: YANG Helin, ZHENG Mengting, LIU Shuai, XIAO Liang, XIE Xianzhong, XIONG Zehui. Intelligent Weighted Energy Consumption and Delay Optimization for UAV-Assisted MEC Under Malicious Jamming[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2879-2887. doi: 10.11999/JEIT230986

Intelligent Weighted Energy Consumption and Delay Optimization for UAV-Assisted MEC Under Malicious Jamming

doi: 10.11999/JEIT230986
Funds:  The National Natural Science Foundation of China (62371408, 62301467, U21A20444, 61971366), The Fundamental Research Funds for the Central Universities (20720220080), The Natural Science Foundation of Xiamen(3502Z202371010), Xiaomi Young Talents Program, National Key Research and Development Program of China (2023YFB3107603)
  • Received Date: 2023-09-08
  • Rev Recd Date: 2024-04-08
  • Available Online: 2024-05-07
  • Publish Date: 2024-07-29
  • In recent years, mounting Mobile Edge Computing (MEC) servers on Unmanned Aerial Vehicle (UAV) to provide services for mobile ground users has been widely researched in academia and industry. However, in malicious jamming environments, how to effectively schedule resources to reduce system delay and energy consumption becomes a key challenge. Therefore, this paper considers a UAV-assisted MEC system under a malicious jammer, where an optimization model is established to minimize the weighted energy consumption and delay by jointly optimizing UAV flight trajectories, resource scheduling, and task allocation. As the optimization problem is difficult to be solved and the malicious jamming behavior is dynamic, a Twin Delayed Deep Deterministic (TD3) policy gradient algorithm is proposed to search for the optimal policy. At the same time, the Prioritized Experience Replay (PER) technique is added to improve the convergence speed and stability of the algorithm, which is highly effective against malicious interference attacks. The simulation results show that the proposed algorithm can effectively reduce the delay and energy consumption, and achieve good convergence and stability compared with other algorithms.
  • loading
  • [1]
    MAO Yuyi, YOU Changsheng, ZHANG Jun, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201.
    [2]
    WANG Di, TIAN Jie, ZHANG Haixia, et al. Task offloading and trajectory scheduling for UAV-enabled MEC networks: An optimal transport theory perspective[J]. IEEE Wireless Communications Letters, 2022, 11(1): 150–154. doi: 10.1109/LWC.2021.3122957.
    [3]
    LIN Xingqin, YAJNANARAYANA V, MURUGANATHAN S D, et al. The sky is not the limit: LTE for unmanned aerial vehicles[J]. IEEE Communications Magazine, 2018, 56(4): 204–210. doi: 10.1109/MCOM.2018.1700643.
    [4]
    CHEN Fangni, FU Jiafei, WANG Zhongpeng, et al. Joint communication and computation resource optimization in FD-MEC cellular networks[J]. IEEE Access, 2019, 7: 168444–168454. doi: 10.1109/ACCESS.2019.2954622.
    [5]
    ZHANG Xiaochen, ZHANG Jiao, XIONG Jun, et al. Energy-efficient multi-UAV-enabled multiaccess edge computing incorporating NOMA[J]. IEEE Internet of Things Journal, 2020, 7(6): 5613–5627. doi: 10.1109/JIOT.2020.2980035.
    [6]
    ZHANG Liang and ANSARI N. Latency-aware IoT service provisioning in UAV-aided mobile-edge computing networks[J]. IEEE Internet of Things Journal, 2020, 7(10): 10573–10580. doi: 10.1109/JIOT.2020.3005117.
    [7]
    HU Qiyu, CAI Yunlong, YU Guanding, et al. Joint offloading and trajectory design for UAV-enabled mobile edge computing systems[J]. IEEE Internet of Things Journal, 2019, 6(2): 1879–1892. doi: 10.1109/JIOT.2018.2878876.
    [8]
    YU Zhe, GONG Yanmin, GONG Shimin, et al. Joint task offloading and resource allocation in UAV-enabled mobile edge computing[J]. IEEE Internet of Things Journal, 2020, 7(4): 3147–3159. doi: 10.1109/JIOT.2020.2965898.
    [9]
    ZHOU Wen, XING Ling, XIA Junjuan, et al. Dynamic computation offloading for MIMO mobile edge computing systems with energy harvesting[J]. IEEE Transactions on Vehicular Technology, 2021, 70(5): 5172–5177. doi: 10.1109/TVT.2021.3075018.
    [10]
    余雪勇, 朱烨, 邱礼翔, 等. 基于无人机辅助边缘计算系统的节能卸载策略[J]. 系统工程与电子技术, 2022, 44(3): 1022–1029. doi: 10.12305/j.issn.1001-506X.2022.03.35.

    YU Xueyong, ZHU Ye, QIU Lixiang, et al. Energy efficient offloading strategy for UAV aided edge computing systems[J]. Systems Engineering and Electronics, 2022, 44(3): 1022–1029. doi: 10.12305/j.issn.1001-506X.2022.03.35.
    [11]
    李安, 戴龙斌, 余礼苏, 等. 加权能耗最小化的无人机辅助移动边缘计算资源分配策略[J]. 电子与信息学报, 2022, 44(11): 3858–3865. doi: 10.11999/JEIT210832.

    LI An, DAI Longbin, YU Lisu, et al. Resource allocation for unmanned aerial vehicle-assisted mobile edge computing to minimize weighted energy consumption[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3858–3865. doi: 10.11999/JEIT210832.
    [12]
    LI Yuxi. Deep reinforcement learning: An overview[EB/OL].https://arxiv.org/abs/1701.07274, 2017.
    [13]
    CHENG Nan, LYU Feng, QUAN Wei, et al. Space/aerial-assisted computing offloading for IoT applications: A learning-based approach[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(5): 1117–1129. doi: 10.1109/JSAC.2019.2906789.
    [14]
    SEID A M, BOATENG G O, ANOKYE S, et al. Collaborative computation offloading and resource allocation in multi-UAV-assisted IoT networks: A deep reinforcement learning approach[J]. IEEE Internet of Things Journal, 2021, 8(15): 12203–12218. doi: 10.1109/JIOT.2021.3063188.
    [15]
    XIAO Liang, DING Yuzhen, HUANG Jinhao, et al. UAV anti-jamming video transmissions with QoE guarantee: A reinforcement learning-based approach[J]. IEEE Transactions on Communications, 2021, 69(9): 5933–5947. doi: 10.1109/TCOMM.2021.3087787.
    [16]
    FUJIMOTO S, HOOF H, and MEGER D. Addressing function approximation error in actor-critic methods[C]. Proceedings of the 35th International Conference on Machine Learning, Stockholmsmässan, Sweden, 2018: 1587–1596.
    [17]
    LIN Na, TANG Hailun, ZHAO Liang, et al. A PDDQNLP algorithm for energy efficient computation offloading in UAV-assisted MEC[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 8876–8890. doi: 10.1109/TWC.2023.3266497.
    [18]
    LIU Boyang, WAN Yiyao, ZHOU Fuhui, et al. Resource allocation and trajectory design for MISO UAV-assisted MEC networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(5): 4933–4948. doi: 10.1109/TVT.2022.3140833.
    [19]
    ZHOU Yi, PAN Cunhua, YEOH P L, et al. Secure communications for UAV-enabled mobile edge computing systems[J]. IEEE Transactions on Communications, 2020, 68(1): 376–388. doi: 10.1109/TCOMM.2019.2947921.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (479) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return