Advanced Search
Volume 46 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
TANG Lun, LI Zhixuan, WEN Wen, CHENG Zhangchao, CHEN Qianbin. Digital Twin Sensing Information Synchronization Strategy Based on Intelligent Hierarchical Slicing Technique[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2793-2802. doi: 10.11999/JEIT230984
Citation: TANG Lun, LI Zhixuan, WEN Wen, CHENG Zhangchao, CHEN Qianbin. Digital Twin Sensing Information Synchronization Strategy Based on Intelligent Hierarchical Slicing Technique[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2793-2802. doi: 10.11999/JEIT230984

Digital Twin Sensing Information Synchronization Strategy Based on Intelligent Hierarchical Slicing Technique

doi: 10.11999/JEIT230984
Funds:  The National Natural Science Foundation of China (62071078), Sichuan Science and Technology Program (2021YFQ0053)
  • Received Date: 2023-09-07
  • Rev Recd Date: 2023-12-12
  • Available Online: 2023-12-22
  • Publish Date: 2024-07-29
  • In order to mitigate the problem of inaccurate synchronization sensory information in Digital Twins (DTs) caused by unreliable and delayed transmission in Radio Access Networks (RAN), a sensory information synchronization strategy for DTs based on intelligent hierarchical slicing technology is proposed. The strategy aims to optimize the allocation of wireless resources for slicing and the synchronization of DTs’ sensing information in dual time scales, with the goals of maximizing the satisfaction of sensing information and minimizing the costs associated with slicing reconfiguration and DTs’ synchronization. Firstly, at large time scales, network slicing is employed to provide isolation for DTs with varying Quality of Service (QoS) and resolve deployment challenges; At small time scales, a more flexible wireless resource allocation is utilized to enhance the adaptability of DTs’ sensory information synchronization to dynamic environments. Secondly, in order to optimize the synchronization of DTs’ sensory information at different time scales, a two-layer Deep Reinforcement Learning (DRL) framework is introduced to facilitate efficient network resource interaction, and in the framework the lower-layer control algorithm incorporates the Prioritized Experience Replay (PER) mechanism to accelerate convergence speed. Finally, the effectiveness of the proposed strategy is validated through simulation results.
  • loading
  • [1]
    ZEB S, MAHMOOD A, HASSAN S A, et al. Industrial digital twins at the nexus of NextG wireless networks and computational intelligence: A survey[J]. Journal of Network and Computer Applications, 2022, 200: 103309. doi: 10.1016/j.jnca.2021.103309.
    [2]
    LIN Xingqin, KUNDU L, DICK C, et al. 6G digital twin networks: From theory to practice[J]. IEEE Communications Magazine, 2023, 61(11): 72–78. doi: 10.1109/MCOM.001.2200830.
    [3]
    KURUVATTI N P, HABIBI M A, PARTANI S, et al. Empowering 6G communication systems with digital twin technology: A comprehensive survey[J]. IEEE Access, 2022, 10: 112158–112186. doi: 10.1109/ACCESS.2022.3215493.
    [4]
    KHAN L U, SAAD W, NIYATO D, et al. Digital-twin-enabled 6G: Vision, architectural trends, and future directions[J]. IEEE Communications Magazine, 2022, 60(1): 74–80. doi: 10.1109/MCOM.001.21143.
    [5]
    WU Yiwen, ZHANG Ke, and ZHANG Yan. Digital twin networks: A survey[J]. IEEE Internet of Things Journal, 2021, 8(18): 13789–13804. doi: 10.1109/JIOT.2021.3079510.
    [6]
    LU Yunlong, HUANG Xiaohong, ZHANG Ke, et al. Low-latency federated learning and blockchain for edge association in digital twin empowered 6G networks[J]. IEEE Transactions on Industrial Informatics, 2021, 17(7): 5098–5107. doi: 10.1109/TII.2020.3017668.
    [7]
    LIU Tong, TANG Lun, WANG Weili, et al. Resource allocation in DT-assisted internet of vehicles via edge intelligent cooperation[J]. IEEE Internet of Things Journal, 2022, 9(18): 17608–17626. doi: 10.1109/JIOT.2022.3156100.
    [8]
    LU Yunlong, MAHARJAN S, and ZHANG Yan. Adaptive edge association for wireless digital twin networks in 6G[J]. IEEE Internet of Things Journal, 2021, 8(22): 16219–16230. doi: 10.1109/JIOT.2021.3098508.
    [9]
    SUI Tianju, YOU Keyou, and FU Minyue. Stability conditions for multi-sensor state estimation over a Lossy network[J]. Automatica, 2015, 53: 1–9. doi: 10.1016/j.automatica.2014.12.022.
    [10]
    CHUKHNO O, CHUKHNO N, ARANITI G, et al. Placement of social digital twins at the edge for beyond 5G IoT networks[J]. IEEE Internet of Things Journal, 2022, 9(23): 23927–23940. doi: 10.1109/JIOT.2022.3190737.
    [11]
    LYU Ling, DAI Yanpeng, CHENG Nan, et al. AoI-aware co-design of cooperative transmission and state estimation for marine IoT systems[J]. IEEE Internet of Things Journal, 2021, 8(10): 7889–7901. doi: 10.1109/JIOT.2020.3041287.
    [12]
    WIJETHILAKA S and LIYANAGE M. Survey on network slicing for internet of things realization in 5G networks[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 957–994. doi: 10.1109/COMST.2021.3067807.
    [13]
    CHIANG Y, HSU C H, CHEN G H, et al. Deep Q-learning-based dynamic network slicing and task offloading in edge network[J]. IEEE Transactions on Network and Service Management, 2023, 20(1): 369–384. doi: 10.1109/TNSM.2022.3208776.
    [14]
    YE Feng, WANG Jie, LI Jiamin, et al. Intelligent hierarchical network slicing based on dynamic multi-connectivity in cell-free distributed massive MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(9): 11855–11870. doi: 10.1109/TVT.2023.3268822.
    [15]
    KHAN L U, HAN Zhu, SAAD W, et al. Digital twin of wireless systems: Overview, taxonomy, challenges, and opportunities[J]. IEEE Communications Surveys & Tutorials, 2022, 24(4): 2230–2254. doi: 10.1109/COMST.2022.3198273.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (253) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return