Advanced Search
Volume 46 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
WANG Kun, DING Qilong. Remote Sensing Images Small Object Detection Algorithm With Adaptive Fusion and Hybrid Anchor Detector[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2942-2951. doi: 10.11999/JEIT230966
Citation: WANG Kun, DING Qilong. Remote Sensing Images Small Object Detection Algorithm With Adaptive Fusion and Hybrid Anchor Detector[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2942-2951. doi: 10.11999/JEIT230966

Remote Sensing Images Small Object Detection Algorithm With Adaptive Fusion and Hybrid Anchor Detector

doi: 10.11999/JEIT230966
Funds:  The National Natural Science Foundation of China (62173331)
  • Received Date: 2023-09-04
  • Rev Recd Date: 2024-04-08
  • Available Online: 2024-05-01
  • Publish Date: 2024-07-29
  • A hybrid detector AEM-YOLO based on the adaptive fusion of different scale features is proposed, aiming at the problems of difficult detection of small objects in remote sensing images caused by the high background noise, dense arrangement of small objects, and wide-scale distribution. Firstly, a two-axes k-means clustering algorithm combining width and height information with scale and ratio information is proposed to generate anchor boxes with high matching degrees with remote sensing datasets. Secondly, an adaptive enhance module is designed to address information conflicts caused by direct fusion between different scale features. A lower feature layer is introduced to broadcast small object details along the bottom-up path. By using multi-task learning and scale guidance factor, the recall for objects with a high aspect ratio can be effectively improved. Finally, the experiments on the DIOR dataset show that compared with the original model, the AP of AEM-YOLO is improved by 7.8%, and increased by 5.4%, 7.2%, and 8.6% in small, medium, and large object detection, respectively.
  • loading
  • [1]
    WANG Kun and LIU Maozhen. Toward structural learning and enhanced YOLOv4 network for object detection in optical remote sensing images[J]. Advanced Theory and Simulations, 2022, 5(6): 2200002. doi: 10.1002/adts.202200002.
    [2]
    王成龙, 赵倩, 赵琰, 等. 基于深度可分离卷积的实时遥感目标检测算法[J]. 电光与控制, 2022, 29(8): 45–49. doi: 10.3969/j.issn.1671-637X.2022.08.009.

    WANG Chenglong, ZHAO Qian, ZHAO Yan, et al. A real-time remote sensing target detection algorithm based on depth Separable convolution[J]. Electronics Optics & Control, 2022, 29(8): 45–49. doi: 10.3969/j.issn.1671-637X.2022.08.009.
    [3]
    REIS D, KUPEC J, HONG J, et al. Real-time flying object detection with YOLOv8[J]. arXiv: 2305.09972, 2023. doi: 10.48550/arXiv.2305.09972.
    [4]
    ZHU Chenchen, HE Yihui, and SAVVIDES M. Feature selective anchor-free module for single-shot object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 840–849. doi: 10.1109/CVPR.2019.00093.
    [5]
    LIU Songtao, HUANG Di, and WANG Yunhong. Learning spatial fusion for single-shot object detection[J]. arXiv: 1911.09516, 2019. doi: 10.48550/arXiv.1911.09516.
    [6]
    马梁, 苟于涛, 雷涛, 等. 基于多尺度特征融合的遥感图像小目标检测[J]. 光电工程, 2022, 49(4): 210363. doi: 10.12086/oee.2022.210363.

    MA Liang, GOU Yutao, LEI Tao, et al. Small object detection based on multi-scale feature fusion using remote sensing images[J]. Opto-Electronic Engineering, 2022, 49(4): 210363. doi: 10.12086/oee.2022.210363.
    [7]
    雷大江, 杜加浩, 张莉萍, 等. 联合多流融合和多尺度学习的卷积神经网络遥感图像融合方法[J]. 电子与信息学报, 2022, 44(1): 237–244. doi: 10.11999/JEIT200792.

    LEI Dajiang, DU Jiahao, ZHANG Liping, et al. Multi-stream architecture and multi-scale convolutional neural network for remote sensing image fusion[J]. Journal of Electronics & Information Technology, 2022, 44(1): 237–244. doi: 10.11999/JEIT200792.
    [8]
    QIN Zheng, LI Zeming, ZHANG Zhaoning, et al. ThunderNet: Towards real-time generic object detection on mobile devices[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 6717–6726. doi: 10.1109/ICCV.2019.00682.
    [9]
    KIM M, JEONG J, and KIM S. ECAP-YOLO: Efficient channel attention pyramid YOLO for small object detection in aerial image[J]. Remote Sensing, 2021, 13(23): 4851. doi: 10.3390/rs13234851.
    [10]
    BOCHKOVSKIY A, WANG C Y, and LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[J]. arXiv: 2004.10934, 2020. doi: 10.48550/arXiv.2004.10934.
    [11]
    ZHENG Zhaohui, WANG Ping, LIU Wei, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]. Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 12993–13000. doi: 10.1609/aaai.v34i07.6999.
    [12]
    GE Zheng, LIU Songtao, WANG Feng, et al. YOLOX: Exceeding YOLO series in 2021[J]. arXiv: 2107.08430, 2021. doi: 10.48550/arXiv.2107.08430.
    [13]
    LI Ke, WAN Gang, CHENG Gong, et al. Object detection in optical remote sensing images: A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296–307. doi: 10.1016/j.isprsjprs.2019.11.023.
    [14]
    CHENG Gong, HAN Junwei, ZHOU Peicheng, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98: 119–132. doi: 10.1016/j.isprsjprs.2014.10.002.
    [15]
    TAN Mingxing, PANG Ruoming, and LE Q V. EfficientDet: Scalable and efficient object detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 10778–10787. doi: 10.1109/CVPR42600.2020.01079.
    [16]
    LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2999–3007. doi: 10.1109/ICCV.2017.324.
    [17]
    WANG C Y, BOCHKOVSKIY A, and LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 7464–7475. doi: 10.1109/CVPR52729.2023.00721.
    [18]
    LI Chuyi, LI Lulu, JIANG Hongliang, et al. YOLOv6: A single-stage object detection framework for industrial applications[J]. arXiv: 2209.02976, 2022. doi: 10.48550/arXiv.2209.02976.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(8)

    Article Metrics

    Article views (355) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return