Advanced Search
Volume 46 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
LI Xiehua, LOU Qin, YANG Junxue, LIAO Xin. Screen-Shooting Resilient Watermarking Scheme Combining Invertible Neural Network and Inverse Gradient Attention[J]. Journal of Electronics & Information Technology, 2024, 46(7): 3046-3053. doi: 10.11999/JEIT230953
Citation: LI Xiehua, LOU Qin, YANG Junxue, LIAO Xin. Screen-Shooting Resilient Watermarking Scheme Combining Invertible Neural Network and Inverse Gradient Attention[J]. Journal of Electronics & Information Technology, 2024, 46(7): 3046-3053. doi: 10.11999/JEIT230953

Screen-Shooting Resilient Watermarking Scheme Combining Invertible Neural Network and Inverse Gradient Attention

doi: 10.11999/JEIT230953
Funds:  The National Natural Science Foundation of China (U22A2030, 61972142), Hunan Provincial Natural Science Foundation (2021JJ30140), Hunan Provincial Funds for Distinguished Young Scholars (2024JJ2025), Changsha Science and Technology Major Project (kh2205033)
  • Received Date: 2023-08-31
  • Rev Recd Date: 2024-03-21
  • Available Online: 2024-04-12
  • Publish Date: 2024-07-29
  • With the growing use of smart devices, the ease of sharing digital media content has been enhanced. Concerns have been raised about unauthorized access, particularly via screen shooting. In this paper, a novel end-to-end watermarking framework is proposed, employing invertible neural networks and inverse gradient attention, to tackle the copyright infringement challenges related to screen content leakage. A single invertible neural network is employed by the proposed method for watermark embedding and extraction, ensuring information integrity during network propagation. Additionally, robustness and visual quality are enhanced by an inverse gradient attention module, which emphasizes pixel values and embeds the watermark in imperceptible areas for better invisibility and model resilience. Model parameters are optimized using the Learnable Perceptual Image Patch Similarity (LPIPS) loss function, minimizing perception differences in watermarked images. The superiority of this approach over existing learning-based screen-shooting resilient watermarking methods in terms of robustness and visual quality is demonstrated by experimental results.
  • loading
  • [1]
    VAN SCHYNDEL R G, TIRKEL A Z, and OSBORNE C F. A digital watermark[C]. 1st International Conference on Image Processing, Austin, USA, 1994, 2: 86–90. doi: 10.1109/ICIP.1994.413536.
    [2]
    方涵. 屏摄鲁棒水印方法研究[D]. [博士论文], 中国科学技术大学, 2021. doi: 10.27517/d.cnki.gzkju.2021.000591.

    FANG Han. Research on screen shooting resilient watermarking[D]. [Ph. D. dissertation], University of Science and Technology of China, 2021. doi: 10.27517/d.cnki.gzkju.2021.000591.
    [3]
    WAN Wenbo, WANG Jun, ZHANG Yunming, et al. A comprehensive survey on robust image watermarking[J]. Neurocomputing, 2022, 488: 226–247. doi: 10.1016/j.neucom.2022.02.083.
    [4]
    项世军, 杨乐. 基于同态加密系统的图像鲁棒可逆水印算法[J]. 软件学报, 2018, 29(4): 957–972. doi: 10.13328/j.cnki.jos.005406.

    XIANG Shijun and YANG Le. Robust and reversible image watermarking algorithm in homomorphic encrypted domain[J]. Journal of Software, 2018, 29(4): 957–972. doi: 10.13328/j.cnki.jos.005406.
    [5]
    张天骐, 周琳, 梁先明, 等. 基于Blob-Harris特征区域和NSCT-Zernike的鲁棒水印算法[J]. 电子与信息学报, 2021, 43(7): 2038–2045. doi: 10.11999/JEIT200164.

    ZHANG Tianqi, ZHOU Lin, LIANG Xianming, et al. A robust watermarking algorithm based on Blob-Harris and NSCT-Zernike[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2038–2045. doi: 10.11999/JEIT200164.
    [6]
    KANG Shuangyong, JIN Biao, LIU Yuxin, et al. Research on screen shooting resilient watermarking based on dot-matric[C]. 2023 2nd International Conference on Big Data, Information and Computer Network (BDICN), Xishuangbanna, China, 2023: 194–199. doi: 10.1109/BDICN58493.2023.00048.
    [7]
    SCHABER P, KOPF S, WETZEL S, et al. CamMark: Analyzing, modeling, and simulating artifacts in camcorder copies[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2015, 11(2s): 42. doi: 10.1145/2700295.
    [8]
    FANG Han, ZHANG Weiming, ZHOU Hang, et al. Screen-shooting resilient watermarking[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(6): 1403–1418. doi: 10.1109/TIFS.2018.2878541.
    [9]
    DONG Li, CHEN Jiale, PENG Chengbin, et al. Watermark-preserving keypoint enhancement for screen-shooting resilient watermarking[C]. 2022 IEEE International Conference on Multimedia and Expo, Taipei, China, 2022: 1–6. doi: 10.1109/ICME52920.2022.9859950.
    [10]
    KANDI H, MISHRA D, and GORTHI S R K S. Exploring the learning capabilities of convolutional neural networks for robust image watermarking[J]. Computers & Security, 2017, 65: 247–268. doi: 10.1016/j.cose.2016.11.016.
    [11]
    ZHU Jiren, KAPLAN R, JOHNSON J, et al. HiDDeN: Hiding data with deep networks[C]. 15th European Conference on Computer Vision, Munich, Germany, 2018: 682–697. doi: 10.1007/978-3-030-01267-0_40.
    [12]
    ZHANG Honglei, WANG Hu, CAO Yuanzhouhan, et al. Robust data hiding using inverse gradient attention[EB/OL]. https://doi.org/10.48550/arXiv.2011.10850, 2020.
    [13]
    WENGROWSKI E and DANA K. Light field messaging with deep photographic steganography[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1515–1524. doi: 10.1109/CVPR.2019.00161.
    [14]
    TANCIK M, MILDENHALL B, and NG R. StegaStamp: Invisible hyperlinks in physical photographs[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 2114–2123. doi: 10.1109/CVPR42600.2020.00219.
    [15]
    FANG Han, JIA Zhaoyang, MA Zehua, et al. PIMoG: An effective screen-shooting noise-layer simulation for deep-learning-based watermarking network[C]. 30th ACM International Conference on Multimedia, Lisbon, Portugal, 2022: 2267–2275. doi: 10.1145/3503161.3548049.
    [16]
    DINH L, KRUEGER D, and BENGIO Y. NICE: Non-linear independent components estimation[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015.
    [17]
    KINGMA D P and DHARIWAL P. Glow: Generative flow with invertible 1×1 convolutions[C]. Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 10236–10245.
    [18]
    XIE Yueqi, CHENG K L, and CHEN Qifeng. Enhanced invertible encoding for learned image compression[C]. 29th ACM International Conference on Multimedia, Chengdu, China, 2021: 162–170. doi: 10.1145/3474085.3475213.
    [19]
    XIAO Mingqing, ZHENG Shuxin, LIU Chang, et al. Invertible image rescaling[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 126–144. doi: 10.1007/978-3-030-58452-8_8.
    [20]
    GUO Mengxi, ZHAO Shijie, LI Yue, et al. Invertible single image rescaling via steganography[C]. 2022 IEEE International Conference on Multimedia and Expo (ICME), Taipei, China, 2022: 1–6. doi: 10.1109/ICME52920.2022.9859915.
    [21]
    LU Shaoping, WANG Rong, ZHONG Tao, et al. Large-capacity image steganography based on invertible neural networks[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 10811–10820. doi: 10.1109/CVPR46437.2021.01067.
    [22]
    GUAN Zhenyu, JING Junpeng, DENG Xin, et al. DeepMIH: Deep invertible network for multiple image hiding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 372–390. doi: 10.1109/TPAMI.2022.3141725.
    [23]
    MA Rui, GUO Mengxi, HOU Yi, et al. Towards blind watermarking: Combining invertible and non-invertible mechanisms[C]. 30th ACM International Conference on Multimedia, Lisbon, Portugal, 2022: 1532–1542. doi: 10.1145/3503161.3547950.
    [24]
    ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 586–595. doi: 10.1109/CVPR.2018.00068.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(7)

    Article Metrics

    Article views (436) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return