Advanced Search
Volume 46 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
CHEN Cong, XU Qiang, ZHAO Hongzhi, SHAO Shihai, TANG Youxi. Research on Full-duplex Two-Way Time Transfer Techniques for Flying Ad Hoc Networks[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2732-2739. doi: 10.11999/JEIT230949
Citation: CHEN Cong, XU Qiang, ZHAO Hongzhi, SHAO Shihai, TANG Youxi. Research on Full-duplex Two-Way Time Transfer Techniques for Flying Ad Hoc Networks[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2732-2739. doi: 10.11999/JEIT230949

Research on Full-duplex Two-Way Time Transfer Techniques for Flying Ad Hoc Networks

doi: 10.11999/JEIT230949
Funds:  The National Natural Science Foundation of China (U19B2014, 62071094, 61901396)
  • Received Date: 2023-08-31
  • Rev Recd Date: 2023-12-05
  • Available Online: 2023-12-13
  • Publish Date: 2024-07-29
  • In order to solve the problems of time synchronization accuracy degradation of two-way time transfer due to relative motion between nodes in Flying Ad hoc NETwork (FANET), a full-duplex Two-Way Time Transfer (TWTT) method is proposed. Firstly, a system of equations to be solved is constructed according to the full-duplex two-way time transfer procedure, and the synchronization error expression for single full-duplex two-way time transfer is derived. Then, the convergence of iteratively performing full-duplex two-way time transfer with or without frequency offset is analyzed. Finally, the performance of full-duplex two-way time transfer method is compared with traditional two-way time transfer methods by simulation analysis and experimental validation. The simulation and experimental results show that full-duplex two-way time transfer method can achieve the same time synchronization accuracy as the physical layer timestamps under high-speed maneuvering between nodes, and the synchronization accuracy is better than the existing motion compensation methods.
  • loading
  • [1]
    KIM D Y and LEE J W. Joint mission assignment and topology management in the mission-critical FANET[J]. IEEE Internet of Things Journal, 2020, 7(3): 2368–2385. doi: 10.1109/JIOT.2019.2958130.
    [2]
    LAKEW D S, SA’AD U, DAO N N, et al. Routing in flying ad hoc networks: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 1071–1120. doi: 10.1109/COMST.2020.2982452.
    [3]
    ARAFAT M Y, POUDEL S, and MOH S. Medium access control protocols for flying Ad hoc networks: A review[J]. IEEE Sensors Journal, 2021, 21(4): 4097–4121. doi: 10.1109/JSEN.2020.3034600.
    [4]
    YANG Beiya and YANG Erfu. A survey on radio frequency based precise localisation technology for UAV in GPS-denied environment[J]. Journal of Intelligent & Robotic Systems, 2021, 103(3): 38. doi: 10.1007/s10846-021-01500-4.
    [5]
    DU Bin, MAO Ruijiu, KONG Nan, et al. Distributed data fusion for on-scene signal sensing with a multi-UAV system[J]. IEEE Transactions on Control of Network Systems, 2020, 7(3): 1330–1341. doi: 10.1109/TCNS.2020.2975228.
    [6]
    NANZER J A, MGHABGHAB S R, ELLISON S M, et al. Distributed phased arrays: Challenges and recent advances[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(11): 4893–4907. doi: 10.1109/TMTT.2021.3092401.
    [7]
    SEIJO O, VAL I, LUVISOTTO M, et al. Clock synchronization for wireless time-sensitive networking: A march from microsecond to nanosecond[J]. IEEE Industrial Electronics Magazine, 2022, 16(2): 35–43. doi: 10.1109/MIE.2021.3078071.
    [8]
    SEIJO Ó, LÓPEZ-FERNÁNDEZ J A, BERNHARD H P, et al. Enhanced timestamping method for subnanosecond time synchronization in IEEE 802.11 over WLAN standard conditions[J]. IEEE Transactions on Industrial Informatics, 2020, 16(9): 5792–5805. doi: 10.1109/TII.2019.2959200.
    [9]
    PRAGER S, HAYNES M S, and MOGHADDAM M. Wireless subnanosecond RF synchronization for distributed ultrawideband software-defined radar networks[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(11): 4787–4804. doi: 10.1109/TMTT.2020.3014876.
    [10]
    MERLO J M, MGHABGHAB S R, and NANZER J A. Wireless picosecond time synchronization for distributed antenna arrays[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(4): 1720–1731. doi: 10.1109/TMTT. 2022.3227878.
    [11]
    IEEE. IEEE Std 1588-2008 IEEE standard for a precision clock synchronization protocol for networked measurement and control systems[S]. New York: IEEE Standards Association, 2008. doi: 10.1109/IEEESTD.2008.4579760.
    [12]
    于雪晖, 王盾, 李周, 等. 双向比对高精度物理时间同步方法[J]. 航空学报, 2019, 40(5): 203–217. doi: 10.7527/s1000-6893.2019.22507.

    YU Xuehui, WANG Dun, LI Zhou, et al. High accuracy physical time synchronization method based on two-way comparison[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 203–217. doi: 10.7527/s1000-6893.2019.22507.
    [13]
    ZHAO Sihao, ZHANG Xiaoping, CUI Xiaowei, et al. Optimal two-way TOA localization and synchronization for moving user devices with clock drift[J]. IEEE Transactions on Vehicular Technology, 2021, 70(8): 7778–7789. doi: 10.1109/TVT.2021.3092255.
    [14]
    JIA Tianyi, HO K C, WAGN Haiyan, et al. Localization of a moving object with sensors in motion by time delays and Doppler shifts[J]. IEEE Transactions on Signal Processing, 2020, 68: 5824–5841. doi: 10.1109/TSP.2020.3023972.
    [15]
    YANG Zhiyu, WANG Rui, JIANG Yi, et al. Joint estimation of velocity, Angle-of-Arrival and Range (JEVAR) using a conjugate pair of Zadoff-Chu sequences[J]. IEEE Transactions on Signal Processing, 2021, 69: 6009–6022. doi: 10.1109/TSP.2021.3122907.
    [16]
    ANTTILA L, LAMPU V, HASSANI S A, et al. Full-duplexing with SDR devices: Algorithms, FPGA implementation, and real-time results[J]. IEEE Transactions on Wireless Communications, 2021, 20(4): 2205–2220. doi: 10.1109/TWC.2020.3040226.
    [17]
    HUANG Xiaojing, LE A T, and GUO Y J. Joint analog and digital self-interference cancellation for full duplex transceiver with frequency-dependent I/Q imbalance[J]. IEEE Transactions on Wireless Communications, 2023, 22(4): 2364–2378. doi: 10.1109/TWC.2022.3211316.
    [18]
    余湋, 张毅, 张志亚, 等. 全双工测控链路自干扰抑制设计与实验验证[J]. 西安电子科技大学学报, 2023, 50(3): 182–191. doi: 10.19665/j.issn1001-2400.2023.03.017.

    YU Wei, ZHANG Yi, ZHANG Zhiya, et al. Design and experimental verification of self-interference suppression for full-duplex measurement and control links[J]. Journal of Xidian University, 2023, 50(3): 182–191. doi: 10.19665/j.issn1001-2400.2023.03.017.
    [19]
    YU Bin, QIAN Chen, LEE J, et al. Realizing high power full duplex in millimeter wave system: Design, prototype and results[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(9): 2893–2906. doi: 10.1109/JSAC.2023.3287609.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (224) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return