Citation: | WEI Lifei, ZHANG Wuji, ZHANG Lei, HU Xuehui, WANG Xuan. A Secure Gradient Aggregation Scheme Based on Local Differential Privacy in Asynchronous Horizontal Federated Learning[J]. Journal of Electronics & Information Technology, 2024, 46(7): 3010-3018. doi: 10.11999/JEIT230923 |
[1] |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]. The 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2017: 1273–82.
|
[2] |
YANG Qiang, LIU Yang, CHEN Tianjian, et al. Federated machine learning: Concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): 12. doi: 10.1145/3298981.
|
[3] |
BONAWITZ K, EICHNER H, GRIESKAMP W, et al. Towards federated learning at scale: System design[C]. Machine Learning and Systems, Stanford, USA, 2019: 374–88.
|
[4] |
XIE Cong, KOYEJO S, and GUPTA I. Asynchronous federated optimization[EB/OL]. https://arxiv.org/abs/1903.03934, 2019.
|
[5] |
LIU Jianchun, XU Hongli, WANG Lun, et al. Adaptive asynchronous federated learning in resource-constrained edge computing[J]. IEEE Transactions on Mobile Computing, 2023, 22(2): 674–690. doi: 10.1109/TMC.2021.3096846.
|
[6] |
HUBA D, NGUYEN J, MALIK K, et al. Papaya: Practical, private, and scalable federated learning[C]. Machine Learning and Systems, Santa Clara, USA, 2022: 814–32.
|
[7] |
BAGDASARYAN E, VEIT A, HUA Yiqing, et al. How to backdoor federated learning[C]. The Twenty Third International Conference on Artificial Intelligence and Statistics, Palermo, Italy, 2020: 2938–2948.
|
[8] |
高莹, 陈晓峰, 张一余, 等. 联邦学习系统攻击与防御技术研究综述[J]. 计算机学报, 2023, 46(9): 1781–1805. doi: 10.11897/SP.J.1016.2023.01781.
GAO Ying, CHEN Xiaofeng, ZHANG Yiyu, et al. A survey of attack and defense techniques for federated learning systems[J]. Chinese Journal of Computers, 2023, 46(9): 1781–1805. doi: 10.11897/SP.J.1016.2023.01781.
|
[9] |
汤凌韬, 陈左宁, 张鲁飞, 等. 联邦学习中的隐私问题研究进展[J]. 软件学报, 2023, 34(1): 197–229. doi: 10.13328/j.cnki.jos.006411.
TANG Lingtao, CHEN Zuoning, ZHANG Lufei, et al. Research progress of privacy issues in federated learning[J]. Journal of Software, 2023, 34(1): 197–229. doi: 10.13328/j.cnki.jos.006411.
|
[10] |
SO J, NOLET C J, YANG C S, et al. Lightsecagg: A lightweight and versatile design for secure aggregation in federated learning[C]. Machine Learning and Systems, Santa Clara, USA, 2022: 694–720.
|
[11] |
FANG Minghong, LIU Jia, GONG N Z, et al. AFLGuard: Byzantine-robust asynchronous federated learning[C]. The 38th Annual Computer Security Applications Conference, Austin, USA, 2022: 632–646. doi: 10.1145/3564625.3567991.
|
[12] |
WANG Rong and TSAI W T. Asynchronous federated learning system based on permissioned blockchains[J]. Sensors, 2022, 22(4): 1672. doi: 10.3390/s22041672.
|
[13] |
LU Yunlong, HUANG Xiaohong, DAI Yueyue, et al. Differentially private asynchronous federated learning for mobile edge computing in urban informatics[J]. IEEE Transactions on Industrial Informatics, 2020, 16(3): 2134–2143. doi: 10.1109/TII.2019.2942179.
|
[14] |
DAMASKINOS G, EL MHAMDI E M, GUERRAOUI R, et al. Asynchronous Byzantine machine learning (the case of SGD)[C]. The 35th International Conference on Machine Learning, Stockholmsmässan, Sweden, 2018: 1153–1162.
|
[15] |
刘艺璇, 陈红, 刘宇涵, 等. 联邦学习中的隐私保护技术[J]. 软件学报, 2022, 33(3): 1057–1092. doi: 10.13328/j.cnki.jos.006446.
LIU Yixuan, CHEN Hong, LIU Yuhan, et al. Privacy-preserving techniques in federated learning[J]. Journal of Software, 2022, 33(3): 1057–1092. doi: 10.13328/j.cnki.jos.006446.
|
[16] |
WANG Bo, LI Hongtao, GUO Yina, et al. PPFLHE: A privacy-preserving federated learning scheme with homomorphic encryption for healthcare data[J]. Applied Soft Computing, 2023, 146: 110677. doi: 10.1016/j.asoc.2023.110677.
|
[17] |
FENG Jun, YANG L T, ZHU Qing, et al. Privacy-preserving tensor decomposition over encrypted data in a federated cloud environment[J]. IEEE Transactions on Dependable and Secure Computing, 2020, 17(4): 857–868. doi: 10.1109/TDSC.2018.2881452.
|
[18] |
李腾, 方保坤, 马卓, 等. 基于同态加密的医疗数据密文异常检测方法[J]. 中国科学:信息科学, 2023, 53(7): 1368–1391. doi: 10.1360/ssi-2022-0214.
LI Teng, FANG Baokun, MA Zhuo, et al. Homomorphic encryption-based ciphertext anomaly detection method for e-health records[J]. Scientia Sinica (Informationis), 2023, 53(7): 1368–1391. doi: 10.1360/ssi-2022-0214.
|
[19] |
GEHLHAR T, MARX F, SCHNEIDER T, et al. SafeFL: MPC-friendly framework for private and robust federated learning[C]. 2023 IEEE Security and Privacy Workshops (SPW), San Francisco, USA, 2023: 69–76. doi: 10.1109/SPW59333.2023.00012.
|
[20] |
MANSOURI M, ÖNEN M, JABALLAH W B, et al. Sok: Secure aggregation based on cryptographic schemes for federated learning[J]. Proceedings on Privacy Enhancing Technologies, 2023, 2023(1): 140–157. doi: 10.56553/popets-2023-0009. doi: 10.56553/popets-2023-0009. doi: 10.56553/popets-2023-0009.doi:10.56553/popets-2023-0009.
|
[21] |
FENG Jun, YANG L T, NIE Xin, et al. Edge–cloud-aided differentially private tucker decomposition for cyber–physical–social systems[J]. IEEE Internet of Things Journal, 2022, 9(11): 8387–8396. doi: 10.1109/JIOT.2020.3004826.
|
[22] |
CAO Di, CHANG Shan, LIN Zhijian, et al. Understanding distributed poisoning attack in federated learning[C]. IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS), Tianjin, China, 2019: 233–239. doi: 10.1109/ICPADS47876.2019.00042.
|
[23] |
ABADI M, CHU A, GOODFELLOW I, et al. Deep learning with differential privacy[C]. The 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 2016: 308–318. doi: 10.1145/2976749.2978318.
|
[24] |
KONEČNÝ J, MCMAHAN H B, XU F X, et al. Federated learning: Strategies for improving communication efficiency[C]. 6th International Conference on Learning Representations, Vancouver, BC, Canada, 2016.
|
[25] |
BLANCHARD P, EL MHAMDI E M, GUERRAOUI R, et al. Machine learning with adversaries: Byzantine tolerant gradient descent[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 118–128.
|
[26] |
YIN Dong, CHEN Yudong, KANNAN R, et al. Byzantine-robust distributed learning: Towards optimal statistical rates[C]. The 35th International Conference on Machine Learning, Stockholmsmässan, Sweden, 2018: 5650–5659.
|