Advanced Search
Volume 46 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
JIAO Runzhi, DENG Jia, HAN Yaquan, HUANG Haifeng, WANG Qingsong, LAI Tao, WANG Xiaoqing. 3DSARBuSim 1.0: High-Resolution Space Borne SAR 3D Imaging Simulation Dataset of Man-Made Buildings[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2681-2693. doi: 10.11999/JEIT230882
Citation: JIAO Runzhi, DENG Jia, HAN Yaquan, HUANG Haifeng, WANG Qingsong, LAI Tao, WANG Xiaoqing. 3DSARBuSim 1.0: High-Resolution Space Borne SAR 3D Imaging Simulation Dataset of Man-Made Buildings[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2681-2693. doi: 10.11999/JEIT230882

3DSARBuSim 1.0: High-Resolution Space Borne SAR 3D Imaging Simulation Dataset of Man-Made Buildings

doi: 10.11999/JEIT230882
Funds:  The National Natural Science Foundation of China (62071499, 62273365)
  • Received Date: 2023-08-11
  • Rev Recd Date: 2024-04-08
  • Available Online: 2024-04-26
  • Publish Date: 2024-07-29
  • Tomographic Synthetic Aperture Radar (TomoSAR) can effectively recover the information of ground objects in steep terrain, and is one of the research hotspots in urban mapping. However, the current public data sets lack the true values of the object models, and cannot quantitatively verify the TomoSAR algorithm. To solve this problem and further promote the development of TomoSAR technology, this paper first proposes an RT-SBRAS (Ray Tracing Based Space Borne Radar Advanced Simulator), which can quickly and stably simulate the spaceborne SAR images of complex buildings compared with previous methods. Based on this, the 1.0 version of the 3D SAR Building Simulation (3DSARBuSim) data set is constructed, which contains the full-link simulation data of eight typical building scenes in dual-band and multi-pass. Finally, Orthogonal Matching Pursuit (OMP) and dual-frequency OMP algorithms are verified on the proposed data set, and the data set can provide clear and accurate quantitative comparison for the algorithms.
  • loading
  • [1]
    KNAELL K K and CARDILLO G P. Radar tomography for the generation of three-dimensional images[J]. IEE Proceedings-Radar, Sonar and Navigation, 1995, 142(2): 54–60. doi: 10.1049/ip-rsn:19951791.
    [2]
    WEBB J L H and MUNSON D C. Radar imaging of three-dimensional surfaces using limited data[C]. Proceedings of the International Conference on Image Processing, Washington, USA, 1995: 136–139. doi: 10.1109/ICIP.1995.529058.
    [3]
    REIGBER A and MOREIRA A. First demonstration of airborne SAR tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2142–2152. doi: 10.1109/36.868873.
    [4]
    FORNARO G, LOMBARDINI F, and SERAFINO F. Three-dimensional multipass SAR focusing: Experiments with long-term spaceborne data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 702–714. doi: 10.1109/TGRS.2005.843567.
    [5]
    MEGLIO F, PANARIELLO G, and SCHIRINZI G. Three dimensional SAR image focusing from non-uniform samples[C]. Proceedings of 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 2007: 528–531. doi: 10.1109/IGARSS.2007.4422847.
    [6]
    LOMBARDINI F and REIGBER A. Adaptive spectral estimation for multibaseline SAR tomography with airborne L-band data[C]. Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 2014–2016. doi: 10.1109/IGARSS.2003.1294324.
    [7]
    GINI F and LOMBARDINI F. Multibaseline cross-track SAR interferometry: A signal processing perspective[J]. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8): 71–93. doi: 10.1109/MAES.2005.1499278.
    [8]
    GUILLASO S and REIGBER A. Polarimetric SAR tomography[C]. Proceedings of the 2nd International Workshop POLINSAR 2005, Frascati, Italy, 2005: 4.
    [9]
    BUDILLON A, EVANGELISTA A, and SCHIRINZI G. SAR tomography from sparse samples[C]. Proceedings of 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 2009: 865–868. doi: 10.1109/IGARSS.2009.5417514.
    [10]
    HOMER J, LONGSTAFF I D, SHE Z, et al. High resolution 3-D imaging via multi-pass SAR[J]. IEE Proceedings - Radar, Sonar and Navigation, 2002, 149(1): 45–50. doi: 10.1049/ip-rsn:20020059.
    [11]
    SUN Xiaofan, WANG Bingnan, XIANG Maosheng, et al. Machine-learning inversion of forest vertical structure based on 2-D-SGVBVoG model for P-band Pol-InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5225115. doi: 10.1109/TGRS.2021.3091541.
    [12]
    VASILE G and CONGEDO M. Comparative analysis of ICA based incoherent target decompositions for Polsar data[C]. Proceedings of 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 4415–4418. doi: 10.1109/IGARSS46834.2022.9883779.
    [13]
    CHEN Zhanye, TANG Shiyang, REN Yi, et al. Curvilinear flight synthetic aperture radar (CF-SAR): Principles, methods, applications, challenges and trends[J]. Remote Sensing, 2022, 14(13): 2983. doi: 10.3390/rs14132983.
    [14]
    仇晓兰, 焦泽坤, 彭凌霄, 等. SARMV3D-1.0: SAR微波视觉三维成像数据集[J]. 雷达学报, 2021, 10(4): 485–498. doi: 10.12000/JR21112.

    QIU Xiaolan, JIAO Zekun, PENG Lingxiao, et al. SARMV3D-1.0: Synthetic aperture radar microwave vision 3D imaging dataset[J]. Journal of Radars, 2021, 10(4): 485–498. doi: 10.12000/JR21112.
    [15]
    仇晓兰, 焦泽坤, 杨振礼, 等. 微波视觉三维SAR关键技术及实验系统初步进展[J]. 雷达学报, 2022, 11(1): 1–19. doi: 10.12000/JR22027.

    QIU Xiaolan, JIAO Zekun, YANG Zhenli, et al. Key technology and preliminary progress of microwave vision 3D SAR experimental system[J]. Journal of Radars, 2022, 11(1): 1–19. doi: 10.12000/JR22027.
    [16]
    WANG Mou, WEI Shunjun, LIANG Jiadian, et al. TPSSI-net: Fast and enhanced two-path iterative network for 3D SAR sparse imaging[J]. IEEE Transactions on Image Processing, 2021, 30: 7317–7332. doi: 10.1109/TIP.2021.3104168.
    [17]
    WANG Mou, WEI Shunjun, LIANG Jiadian, et al. RMIST-net: Joint range migration and sparse reconstruction network for 3-D MmW imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5205117. doi: 10.1109/TGRS.2021.3068405.
    [18]
    WEI Shunjun, LIANG Jiadian, WANG Mou, et al. AF-AMPNet: A deep learning approach for sparse aperture ISAR imaging and autofocusing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5206514. doi: 10.1109/TGRS.2021.3073123.
    [19]
    WU Ke, JIN Guowang, XIONG Xin, et al. Fast SAR image simulation based on echo matrix cell algorithm including multiple scattering[J]. Remote Sensing, 2023, 15(14): 3637. doi: 10.3390/rs15143637.
    [20]
    FRANCESCHETTI G, IODICE A, RICCIO D, et al. SAR raw signal simulation for urban structures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(9): 1986–1995. doi: 10.1109/TGRS.2003.814626.
    [21]
    MARGARIT G, MALLORQUI J J, RIUS J M, et al. On the usage of GRECOSAR, an orbital polarimetric SAR simulator of complex targets, to vessel classification studies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12): 3517–3526. doi: 10.1109/TGRS.2006.881120.
    [22]
    XU Feng and JIN Yaqiu. Imaging simulation of polarimetric SAR for a comprehensive terrain scene using the mapping and projection algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3219–3234. doi: 10.1109/TGRS.2006.879544.
    [23]
    AUER S, BALZ T, BECKER S, et al. 3D SAR simulation of urban areas based on detailed building models[J]. Photogrammetric Engineering & Remote Sensing, 2010, 76(12): 1373–1384. doi: 10.14358/PERS.76.12.1373.
    [24]
    AUER S, HINZ S, and BAMLER R. Ray-tracing simulation techniques for understanding high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3): 1445–1456. doi: 10.1109/TGRS.2009.2029339.
    [25]
    BALZ T and STILLA U. Hybrid GPU-based single- and double-bounce SAR simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(10): 3519–3529. doi: 10.1109/TGRS.2009.2022326.
    [26]
    BALZ T, HAMMER H, and AUER S. Potentials and limitations of SAR image simulators – A comparative study of three simulation approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101: 102–109. doi: 10.1016/j.isprsjprs.2014.12.008.
    [27]
    CHEN Qi, YU Anxi, SUN Zaoyu, et al. A multi-mode space-borne SAR simulator based on SBRAS[C]. Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 4567–4570. doi: 10.1109/IGARSS.2012.6350453.
    [28]
    MEI Dengkui, REN Xiaodong, LE Xuan, et al. Ionospheric tomography: A compressed sensing technique based on dictionary learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5800410. doi: 10.1109/TGRS.2023.3252041.
    [29]
    JIAO Runzhi, DENG Jia, WANG Chuxin, et al. A dual-frequency SAR tomography method with fewer flights for urban building reconstruction[J]. IEEE Sensors Journal, 2023, 23(17): 19483–19496. doi: 10.1109/JSEN.2023.3269603.
    [30]
    CHEN Zhiyang, HU Cheng, DONG Xichao, et al. Coherence-based geosynchronous SAR tomography employing formation flying: System design and performance analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7165–7179. doi: 10.1109/TGRS.2021.3056209.
    [31]
    李冶. 雷达目标高频散射特性分析及其识别应用研究[D]. [硕士论文], 武汉大学, 2020. doi: 10.27379/d.cnki.gwhdu.2020.001310.

    LI Ye. Analysis of high frequency scattering characteristics of radar targets and research on its recognition application[D]. [Master dissertation], Wuhan University, 2020. doi: 10.27379/d.cnki.gwhdu.2020.001310.
    [32]
    王瑶瑶. 低速小型无人机气动特性和RCS计算分析[D]. [硕士论文], 哈尔滨工程大学, 2016.

    WANG Yaoyao. Low speed small UAVs aerodynamic characteristics and RCS computing analysis[D]. [Master dissertation], Harbin Engineering University, 2016.
    [33]
    NIU Shengren, QIU Xiaolan, PENG Lingxiao, et al. Parameter prediction method of SAR target simulation based on convolutional neural networks[C]. Proceedings of the 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2018: 1–5.
    [34]
    AUER S J. 3D synthetic aperture radar simulation for interpreting complex urban reflection scenarios[D]. [Ph. D. dissertation], Technische Universität München, 2011: 126.
    [35]
    JIAO Zekun, DING Chibiao, QIU Xiaolan, et al. Urban 3D imaging using airborne TomoSAR: Contextual information-based approach in the statistical way[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 170: 127–141. doi: 10.1016/j.isprsjprs.2020.10.013.
    [36]
    项德良. SAR图像相似度评估技术研究[D]. [硕士论文], 国防科学技术大学, 2012.

    XIANG Deliang. Research on the evaluation techniques of similarity measure in SAR images[D]. [Master dissertation], National University of Defense Technology, 2012.
    [37]
    LIU Wenkang, BUDILLON A, PASCAZIO V, et al. Performance improvement for SAR tomography based on local plane model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 2298–2310. doi: 10.1109/JSTARS.2022.3151725.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(6)

    Article Metrics

    Article views (502) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return