Citation: | WU Jie, HU Jun, ZHANG Zhongxiang, SHA Wei, HUANG Zhixiang, WU Xianliang. Research Progress of Orbital Angular Momentum Antenna Technologies with Reconfigurable Characteristics[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1173-1185. doi: 10.11999/JEIT230847 |
[1] |
ZHANG Jing, GE Xiaohu, LI Qiang, et al. 5G millimeter-wave antenna array: Design and challenges[J]. IEEE Wireless Communications, 2017, 24(2): 106–112. doi: 10.1109/MWC.2016.1400374RP.
|
[2] |
HE Yejun, CHEN Yaling, ZHANG Long, et al. An overview of terahertz antennas[J]. China Communications, 2020, 17(7): 124–165. doi: 10.23919/J.CC.2020.07.011.
|
[3] |
XU Jianchun, GUO Yaxian, YANG Puyu, et al. Recent progress on RF orbital angular momentum antennas[J]. Journal of Electromagnetic Waves and Applications, 2020, 34(3): 275–300. doi: 10.1080/09205071.2019.1708814.
|
[4] |
赵林军, 张海林, 刘乃安. 涡旋电磁波无线通信技术的研究进展[J]. 电子与信息学报, 2021, 43(11): 3075–3085. doi: 10.11999/JEIT200899.
ZHAO Linjun, ZHANG Hailin, and LIU Naian. Research status of vortex electromagnetic wave wireless communication technologies[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3075–3085. doi: 10.11999/JEIT200899.
|
[5] |
OJAROUDI PARCHIN N, JAHANBAKHSH BASHERLOU H, AL-YASIR Y I, et al. Reconfigurable antennas: Switching techniques—A survey[J]. Electronics, 2020, 9(2): 336. doi: 10.3390/electronics9020336.
|
[6] |
WU Qingqing, ZHANG Shuowen, ZHENG Beixiong, et al. Intelligent reflecting surface-aided wireless communications: A tutorial[J]. IEEE Transactions on Communications, 2021, 69(5): 3313–3351. doi: 10.1109/TCOMM.2021.3051897.
|
[7] |
SHARMA P, TIWARI R N, SINGH P, et al. MIMO antennas: Design approaches, techniques and applications[J]. Sensors, 2022, 22(20): 7813. doi: 10.3390/s22207813.
|
[8] |
MAIR A, VAZIRI A, WEIHS G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313–316. doi: 10.1038/35085529.
|
[9] |
WANG Jian, YANG J Y, FAZAL I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488–496. doi: 10.1038/NPHOTON.2012.138.
|
[10] |
FRANKE-ARNOLD S, BARNETT S M, PADGETT M J, et al. Two-photon entanglement of orbital angular momentum states[J]. Physical Review A, 2002, 65(3): 033823. doi: 10.1103/PhysRevA.65.033823.
|
[11] |
KU Chenda, HUANG Weilun, HUANG J S, et al. Deterministic synthesis of optical vortices in tailored plasmonic archimedes spiral[J]. IEEE Photonics Journal, 2013, 5(3): 4800409. doi: 10.1109/JPHOT.2013.2261802.
|
[12] |
RUFFATO G, MASSARI M, and ROMANATO F. Multiplication and division of the orbital angular momentum of light with diffractive transformation optics[J]. Light:Science & Applications, 2019, 8: 113. doi: 10.1038/s41377-019-0222-2.
|
[13] |
THIDÉ B, THEN H, SJÖHOLM J, et al. Utilization of photon orbital angular momentum in the low-frequency radio domain[J]. Physical Review Letters, 2007, 99(8): 087701. doi: 10.1103/PhysRevLett.99.087701.
|
[14] |
TAMBURINI F, MARI E, SPONSELLI A, et al. Encoding many channels on the same frequency through radio vorticity: First experimental test[J]. New Journal of Physics, 2012, 14(3): 033001. doi: 10.1088/1367-2630/14/3/033001.
|
[15] |
YAN Yan, XIE Guodong, LAVERY M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014, 5: 4876. doi: 10.1038/ncomms5876.
|
[16] |
YANG Tianming, YANG Deqiang, WANG Boning, et al. Experimentally validated, wideband, compact, OAM antennas based on circular vivaldi antenna array[J]. Progress in Electromagnetics Research C, 2018, 80: 211–219. doi: 10.2528/PIERC17110702.
|
[17] |
DENG Changjiang, ZHANG Kai, and FENG Zhenghe. Generating and measuring tunable orbital angular momentum radio beams with digital control method[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 899–902. doi: 10.1109/TAP.2016.2632532.
|
[18] |
BARBUTO M, TROTTA F, BILOTTI F, et al. Circular polarized patch antenna generating orbital angular momentum[J]. Progress in Electromagnetics Research, 2014, 148: 23–30. doi: 10.2528/PIER14050204.
|
[19] |
YANG Yang, GUO Kai, SHEN Fei, et al. Generating multiple OAM based on a nested dual-arm spiral antenna[J]. IEEE Access, 2019, 7: 138541–138547. doi: 10.1109/ACCESS.2019.2942601.
|
[20] |
ZHENG Shilie, HUI Xiaonan, JIN Xiaofeng, et al. Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(4): 1530–1536. doi: 10.1109/TAP.2015.2393885.
|
[21] |
ZHANG Weite, ZHENG Shilie, HUI Xiaonan, et al. Four-OAM-mode antenna with traveling-wave ring-slot structure[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 194–197. doi: 10.1109/LAWP.2016.2569540.
|
[22] |
DENG Changjiang, CHEN Wenhua, ZHANG Zhijun, et al. Generation of OAM radio waves using circular Vivaldi antenna array[J]. International Journal of Antennas and Propagation, 2013, 2013: 847859. doi: 10.1155/2013/847859.
|
[23] |
XU Chen, ZHENG Shilie, ZHANG Weite, et al. Free-space radio communication employing OAM multiplexing based on rotman lens[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(9): 738–740. doi: 10.1109/LMWC.2016.2597262.
|
[24] |
LIU Qiang, CHEN Zhining, LIU Yuanan, et al. Circular polarization and mode reconfigurable wideband orbital angular momentum patch array antenna[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(4): 1796–1804. doi: 10.1109/TAP.2018.2803757.
|
[25] |
YU Shixing, LI Long, SHI Guangming, et al. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain[J]. Applied Physics Letters, 2016, 108(24): 241901. doi: 10.1063/1.4953786.
|
[26] |
MA Qian, SHI Chuanbo, BAI Guodong, et al. Coding metasurfaces: Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit (advanced optical materials 23/2017)[J]. Advanced Optical Materials, 2017, 5(23): 1700548. doi: 10.1002/adom.201770117.
|
[27] |
LIU Baiyang, WONG S W, TAM K W, et al. Multifunctional orbital angular momentum generator with high-gain low-profile broadband and programmable characteristics[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(2): 1068–1076. doi: 10.1109/TAP.2021.3111214.
|
[28] |
李龙, 薛皓, 冯强. 涡旋电磁波的理论与应用研究进展[J]. 微波学报, 2018, 34(2): 1–12. doi: 10.14183/j.cnki.1005-6122.201802001.
LI Long, XUE Hao, and FENG Qiang. Research progresses in theory and applications of vortex electromagnetic waves[J]. Journal of Microwaves, 2018, 34(2): 1–12. doi: 10.14183/j.cnki.1005-6122.201802001.
|
[29] |
郭忠义, 汪彦哲, 郑群, 等. 涡旋电磁波天线技术研究进展[J]. 雷达学报, 2019, 8(5): 631–655. doi: 10.12000/JR19091.
GUO Zhongyi, WANG Yanzhe, ZHENG Qun, et al. Advances of research on antenna technology of vortex electromagnetic waves[J]. Journal of Radars, 2019, 8(5): 631–655. doi: 10.12000/JR19091.
|
[30] |
WU Jie, ZHANG Zhongxiang, REN Xingang, et al. A broadband electronically mode-reconfigurable orbital angular momentum metasurface antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(7): 1482–1486. doi: 10.1109/LAWP.2019.2920695.
|
[31] |
NASERI H, POURMOHAMMADI P, MELOUKI N, et al. A low-profile antenna system for generating reconfigurable OAM-carrying beams[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(2): 402–406. doi: 10.1109/LAWP.2022.3214123.
|
[32] |
XIONG Xiaowen, ZHENG Shilie, CHEN Yuqi, et al. Plane spiral OAM mode-group orthogonal multiplexing communication using partial arc sampling receiving scheme[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(11): 10998–11008. doi: 10.1109/TAP.2022.3188386.
|
[33] |
LIAO Zhen, CHE Yanziyi, LIU Leilei, et al. Reconfigurable vector vortex beams using spoof surface Plasmon ring resonators[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(8): 6795–6803. doi: 10.1109/TAP.2022.3161487.
|
[34] |
LEE D, SASAKI H, FUKUMOTO H, et al. An evaluation of orbital angular momentum multiplexing technology[J]. Applied Sciences, 2019, 9(9): 1729. doi: 10.3390/app909 1729.
|
[35] |
GUO Kai, ZHENG Qun, YIN Zhiping, et al. Generation of mode-reconfigurable and frequency-adjustable OAM beams using dynamic reflective metasurface[J]. IEEE Access, 2020, 8: 75523–75529. doi: 10.1109/ACCESS.2020.2988914.
|
[36] |
LIU Baiyang, HE Yejun, WONG S W, et al. Multifunctional vortex beam generation by a dynamic reflective metasurface[J]. Advanced Optical Materials, 2021, 9(4): 2001689. doi: 10.1002/adom.202001689.
|
[37] |
HUANG Huifen and ZHANG Zhiping. A single fed wideband mode-reconfigurable OAM metasurface CP antenna array with simple feeding scheme[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 31(2): e22499. doi: 10.1002/mmce.22499.
|
[38] |
YAO Yu, LIANG Xianling, ZHU Weiren, et al. Phase mode analysis of radio beams carrying orbital angular momentum[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1127–1130. doi: 10.1109/LAWP.2016.2623808.
|
[39] |
熊孝文. 基于射频轨道角动量的波束赋形技术及应用研究[D]. [博士论文], 浙江大学, 2022.
XIONG Xiaowen. Research on radio orbital angular momentum based beamforming technology and its applications[D]. [Ph. D. dissertation], Zhejiang University, 2022.
|
[40] |
JIA Yinjie, XU Pengfei, and GUO Xinnian. MIMO system capacity based on different numbers of antennas[J]. Results in Engineering, 2022, 15: 100577. doi: 10.1016/J.RINENG.2022.100577.
|
[41] |
LAVADIYA S P, SORATHIYA V, KANZARIYA S, et al. Low profile multiband microstrip patch antenna with frequency reconfigurable feature using PIN diode for S, C, X, and Ku band applications[J]. International journal of communication systems, 2022, (9): 35 doi: 10.1002/dac.5141.
|
[42] |
LI Ji, HE Mang, WU Chunbo, et al. Radiation-pattern-reconfigurable graphene leaky-wave antenna at terahertz band based on dielectric grating structure[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1771–1775. doi: 10.1109/LAWP.2017.2676121.
|
[43] |
WRIGHT M D, BARON W, MILLER J, et al. MEMS reconfigurable broadband patch antenna for conformal applications[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(6): 2770–2778. doi: 10.1109/TAP.2018.2819818.
|
[44] |
MAJID H A, RAHIM M K A, HAMID M R, et al. A compact frequency-reconfigurable narrowband microstrip slot antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 616–619. doi: 10.1109/LAWP.2012.2202869.
|
[45] |
QIN Peiyuan, WEI Feng, and GUO Y J. A wideband-to-narrowband tunable antenna using a reconfigurable filter[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(5): 2282–2285. doi: 10.1109/tap.2015.2402295.
|
[46] |
BORDA-FORTUNY C, TONG K F, AL-ARMAGHANY A, et al. A low-cost fluid switch for frequency-reconfigurable Vivaldi antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 3151–3154. doi: 10.1109/LAWP.2017.2759580.
|
[47] |
YANG S L S, KISHK A A, and LEE K F. Frequency reconfigurable U-slot microstrip patch antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2008, 7: 127–129. doi: 10.1109/LAWP.2008.921330.
|
[48] |
SIM C Y D, HAN T Y, and LIAO Yanjie. A frequency reconfigurable half annular ring slot antenna design[J]. IEEE Transactions on Antennas and propagation, 2014, 62(6): 3428–3431. doi: 10.1109/TAP.2014.2314314.
|
[49] |
JI Luyang, QIN Peiyuan, GUO Y J, et al. A wideband polarization reconfigurable antenna with partially reflective surface[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10): 4534–4538. doi: 10.1109/TAP.2016.2593716.
|
[50] |
TRAN H H, NGUYEN-TRONG N, LE T T, et al. Low-profile wideband high-gain reconfigurable antenna with quad-polarization diversity[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(7): 3741–3746. doi: 10.1109/TAP.2018.2826657.
|
[51] |
SUN Hucheng and SUN Sheng. A novel reconfigurable feeding network for quad-polarization-agile antenna design[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(1): 311–316. doi: 10.1109/TAP.2015.2497350.
|
[52] |
ROW J S and HOU M J. Design of polarization diversity patch antenna based on a compact reconfigurable feeding network[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(10): 5349–5352. doi: 10.1109/TAP.2014.2341271.
|
[53] |
WU Jie, FAN Min, and WU Xianliang. A beam reconfigurable array antenna using slot-coupled microstrip structure[J]. Electronics Letters, 2023, 59(16): e12926. doi: 10.1049/ell2.12926.
|
[54] |
WANG Zhan and DONG Yuandan. Metamaterial-based, vertically polarized, miniaturized beam-steering antenna for reconfigurable sub-6 GHz applications[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(11): 2239–2243. doi: 10.1109/LAWP.2022.3188548.
|
[55] |
YOU Changjiang, LIU Shuhan, ZHANG Jinxi, et al. Frequency- and pattern-reconfigurable antenna array with broadband tuning and wide scanning angles[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(6): 5398–5403. doi: 10.1109/TAP.2023.3255647.
|
[56] |
HU Jun and HAO Zhangcheng. Design of a frequency and polarization reconfigurable patch antenna with a stable gain[J]. IEEE Access, 2018, 6: 68169–68175. doi: 10.1109/ACCESS.2018.2879498.
|
[57] |
CUI Jie, LIU Fengxue, ZHAO Lei, et al. Textile fixed-frequency pattern-reconfigurable coupled-mode substrate-integrated cavity antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(9): 1916–1919. doi: 10.1109/LAWP.2022.3185205.
|
[58] |
WANG Pengfei, JIA Yongtao, LIU Ying, et al. A wideband low-RCS circularly polarized reconfigurable C-shaped antenna array based on liquid metal[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(9): 8020–8029. doi: 10.1109/TAP.2022.3164179.
|
[59] |
HU Jun, YANG Xujun, GE Lei, et al. A reconfigurable 1×4 circularly polarized patch array antenna with frequency, radiation pattern, and polarization agility[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(8): 5124–5129. doi: 10.1109/TAP.2020.3048526.
|
[60] |
ZHOU Jiatong, CHENG Wenchi, and LIANG Liping. OAM transmission in sparse multipath environments with fading[C]. 2020 IEEE International Conference on Communication, Dublin, Ireland, 2020: 1–6. doi: 10.1109/ICC40277.2020.9149057.
|
[61] |
LIANG Liping, CHENG Wenchi, ZHANG Wei, et al. Joint OAM multiplexing and OFDM in sparse multipath environments[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3864–3878. doi: 10.1109/TVT.2020.2966787.
|
[62] |
廖希, 何昌文, 王洋, 等. 室内走廊环境毫米波OAM信道特性分析与统计建模[J]. 电子与信息学报, 2022, 44(12): 4194–4203. doi: 10.11999/JEIT211145.
LIAO Xi, HE Changwen, WANG Yang, et al. Characteristic analysis and statistical modeling of millimeter wave OAM channel in indoor corridor environment[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4194–4203. doi: 10.11999/JEIT211145.
|
[63] |
SUGANUMA H, SAITO S, OGAWA K, et al. Effectiveness evaluation of dual-polarized OAM multiplexing employing SC-FDE in urban street canyon environments[J]. IEEE Access, 2022, 10: 31934–31941. doi: 10.1109/ACCESS.2022.3160161.
|
[64] |
ZHANG Yiming and LI Jialin. Analyses and full-duplex applications of circularly polarized OAM arrays using sequentially rotated configuration[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(12): 7010–7020. doi: 10.1109/TAP.2018.2872169.
|
[65] |
CHEN Rui, LONG Wenxuan, WANG Xiaodong, et al. Multi-mode OAM radio waves: Generation, angle of arrival estimation and reception with UCAs[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6932–6947. doi: 10.1109/TWC.2020.3007026.
|
[66] |
XIONG Xiaowen, ZHENG Shilie, ZHU Zelin, et al. Experimental study of plane spiral OAM mode-group based MIMO communications[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(1): 641–653. doi: 10.1109/TAP.2021.3098518.
|
[67] |
LI Sijia, LI Zhuoyue, HUANG Guoshai, et al. Digital coding transmissive metasurface for multi-OAM-beam[J]. Frontiers of Physics, 2022, 17(6): 62501. doi: 10.1007/s11467-022-1179-9.
|
[68] |
YUAN S S A, WU Jie, CHEN M L N, et al. Approaching the fundamental limit of orbital-angular-momentum multiplexing through a hologram metasurface[J]. Physical Review Applied, 2021, 16(6): 064042. doi: 10.1103/PhysRevApplied.16.064042.
|
[69] |
ISAKOV D, WU Y, ALLEN B, et al. Evaluation of the Laguerre–Gaussian mode purity produced by three-dimensional-printed microwave spiral phase plates[J]. Royal Society Open Science, 2020, 7(7): 200493. doi: 10.1098/rsos.200493.
|
[70] |
ZHANG Z, ZHENG S, JIN X, et al. Generation of plane spiral OAM waves using traveling-wave circular slot antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16(1): 1–1. doi: 10.1109/LAWP.2016.2552227.
|
[71] |
BYUN W J, LEE Y S, KIM B S, et al. Simple generation of orbital angular momentum modes with azimuthally deformed Cassegrain subreflector[J]. Electronics Letters, 2015, 51(19): 1480–1482. doi: 10.1049/el.2015.1833.
|
[72] |
WU Qiuli, JIANG Xuefeng, and ZHANG Chao. Attenuation of orbital angular momentum beam transmission with a parabolic antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(10): 1849–1853. doi: 10.1109/LAWP.2021.3094978.
|
[73] |
ZHU Juanfeng, DU Chaohai, SHA W E I, et al. A wideband OAM antenna based on chiral harmonic diffraction[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(12): 2290–2294. doi: 10.1109/LAWP.2021.3108553.
|
[74] |
BI Ke, XU Jianchun, YANG Daquan, et al. Generation of orbital angular momentum beam with circular polarization ceramic antenna array[J]. IEEE Photonics Journal, 2019, 11(2): 7901508. doi: 10.1109/JPHOT.2019.2899236.
|
[75] |
YOO J U and SON H W. Quad‐mode radial uniform circular array antenna for OAM multiplexing[J]. IET Microwaves, Antennas & Propagation, 2020, 14(8): 728–733. doi: 10.1049/iet-map.2019.0767.
|
[76] |
BAI Xudong, ZHANG Fuli, SUN Li, et al. Dynamic millimeter-wave OAM beam generation through programmable metasurface[J]. Nanophotonics, 2022, 11(7): 1389–1399. doi: 10.1515/nanoph-2021-0790.
|
[77] |
ZHANG Tianzi, HU Jun, ZHANG Qiyun, et al. A compact multimode OAM antenna using sequentially rotated configuration[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(1): 134–138. doi: 10.1109/LAWP.2021.3121134.
|
[78] |
QIN Fan, WAN Lulan, LI Lihong, et al. A transmission metasurface for generating OAM beams[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(10): 1793–1796. doi: 10.1109/LAWP.2018.2867045.
|
[79] |
JI Chen, SONG Jiakun, HUANG Cheng, et al. Dual-band vortex beam generation with different OAM modes using single-layer metasurface[J]. Optics Express, 2019, 27(1): 34–44. doi: 10.1364/OE.27.000034.
|
[80] |
NASERI H, POURMOHAMMADI P, MELOUKI N, et al. Generation of mixed-OAM-carrying waves using huygens’ metasurface for mm-wave applications[J]. Sensors, 2023, 23(5): 2590. doi: 10.3390/s23052590.
|
[81] |
LIANG Jiajun and ZHANG Shengli. Orbital angular momentum (OAM) generation by cylinder dielectric resonator antenna for future wireless communications[J]. IEEE Access, 2016, 4: 9570–9574. doi: 10.1109/ACCESS.2016.2636166.
|
[82] |
PAN Yu, ZHENG Shilie, ZHENG Jiayu, et al. Generation of orbital angular momentum radio waves based on dielectric resonator antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 385–388. doi: 10.1109/LAWP.2016.2578958.
|
[83] |
ABD RAHMAN N A, NOOR S K, IBRAHIM I M, et al. A low-profile dielectric resonator antenna array for OAM waves generation at 5G NR bands[J]. Micromachines, 2023, 14(4): 841. doi: 10.3390/mi14040841.
|
[84] |
YI Ziqiang, TIAN Shuai, LIU Yafei, et al. Multimode orbital angular momentum antenna based on four-arm planar spiral[J]. Electronics Letters, 2019, 55(16): 875–876. doi: 10.1049/el.2019.1606.
|
[85] |
ZHENG F, CHEN Y, JI S, et al. Research status and prospects of orbital angular momentum technology in wireless communication[J]. Progress In Electromagnetics Research, 2020, 168: 113–132. doi: 10.2528/PIER20091104.
|
[86] |
KOOHKAN E, JARCHI S, GHORBANI A, et al. Designing a compact helical slot antenna for multiple circularly polarized OAM modes[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(3): 527–530. doi: 10.1109/LAWP.2022.3217247.
|
[87] |
NOOR S K, YASIN M N M, ISMAIL A M, et al. A review of orbital angular momentum vortex waves for the next generation wireless communications[J]. IEEE Access, 2022, 10: 89465–89484. doi: 10.1109/ACCESS.2022.3197653.
|
[88] |
BYUN W J, KIM K S, KIM B S, et al. Multiplexed cassegrain reflector antenna for simultaneous generation of three orbital angular momentum (OAM) modes[J]. Scientific Reports, 2016, 6(1): 27339. doi: 10.1038/srep27339.
|
[89] |
MING Jie and SHI Yan. A mode reconfigurable orbital angular momentum water antenna[J]. IEEE Access, 2020, 8: 89152–89160. doi: 10.1109/ACCESS.2020.2993490.
|
[90] |
LIU Baiyang, LI Sirong, HE Yejun, et al. Generation of an orbital-angular-momentum-mode-reconfigurable beam by a broadband 1-bit electronically reconfigurable transmitarray[J]. Physical Review Applied, 2021, 15(4): 044035. doi: 10.1103/PhysRevApplied.15.044035.
|
[91] |
NADI M, SEDIGHY S, and CHELDAVI A. Multimode OAM beam generation through 1-Bit programmable metasurface antenna for high throughput data communications[J]. 2023. doi: 10.21203/rs.3.rs-3022677/v1.
|
[92] |
LEI Yi, YANG Yang, WANG Yanzhe, et al. Throughput performance of wireless multiple-input multiple-output systems using OAM antennas[J]. IEEE Wireless Communications Letters, 2021, 10(2): 261–265. doi: 10.1109/LWC.2020.3027006.
|
[93] |
CHEN Rui, ZHOU Jiaxing, LONG Wenxuan, et al. Hybrid circular array and luneberg lens for long-distance OAM wireless communications[J]. IEEE Transactions on Communications, 2023, 71(1): 485–497. doi: 10.1109/TCOMM.2022.3223697.
|
[94] |
YU Zhong, GAO Qi, HE Bingwen, et al. Effects of concentration, temperature, and geometry on double spiral liquid orbital angular momentum antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(12): 2506–2510. doi: 10.1109/LAWP.2021.3115905.
|