Advanced Search
Volume 45 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
LIU Xiaohui, WANG Yichen, WEN Chao, LI Zongnan. Global Navigation Satellite System/Strapdown Inertial Navigation System Integrated Navigation Algorithm in Complex Urban Environment[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4150-4160. doi: 10.11999/JEIT230834
Citation: LIU Xiaohui, WANG Yichen, WEN Chao, LI Zongnan. Global Navigation Satellite System/Strapdown Inertial Navigation System Integrated Navigation Algorithm in Complex Urban Environment[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4150-4160. doi: 10.11999/JEIT230834

Global Navigation Satellite System/Strapdown Inertial Navigation System Integrated Navigation Algorithm in Complex Urban Environment

doi: 10.11999/JEIT230834
Funds:  The National Natural Science Foundation of China(U20A20193)
  • Received Date: 2023-08-02
  • Rev Recd Date: 2023-11-05
  • Available Online: 2023-11-14
  • Publish Date: 2023-11-28
  • In order to solve the problem that the Global Navigation Satellite System (GNSS) signal is frequently unlocked or rejected in complex urban environment, which has great influence on the navigation accuracy and robustness of GNSS/ Strapdown Inertial Navigation System (SINS) integrated navigation system, an improved factor graph filtering method is proposed in this paper. Firstly, GNSS receiver internal parameters are used to construct signal error identification function to estimate the performance of signal measurement at real time in the situation of multipath interference and occlusion. Simultaneously, zero-velocity update factor is constructed by the carrier motion constraint to update the system state under the condition of GNSS rejection. The experimental results show that compared with the classical factor graph method, the improved factor graph method can improve the positioning accuracy by 63.50% and the velocity measurement accuracy by 42.26% in complex environment with lower storage and computational complexity. The method is especially suitable for the scenarios with strong constraints on navigation accuracy, hardware resources and real-time performance in urban vehicle assisted driving navigation equipment.
  • loading
  • [1]
    NIU Xiaoji, DAI Yuhang, LIU Tianyi, et al. Feature-based GNSS positioning error consistency optimization for GNSS/INS integrated system[J]. GPS Solutions, 2023, 27(2): 89. doi: 10.1007/s10291-023-01421-9
    [2]
    WANG Hao, PAN Shuguo, GAO Wang, et al. Multipath/NLOS detection based on k-means clustering for GNSS/INS tightly coupled system in urban areas[J]. Micromachines, 2022, 13(7): 1128. doi: 10.3390/mi13071128
    [3]
    JIANG Haitao, SHI Chuang, LI Tuan, et al. Low-cost GPS/INS integration with accurate measurement modeling using an extended state observer[J]. GPS Solutions, 2021, 25(1): 17. doi: 10.1007/s10291-020-01053-3
    [4]
    CHANG Dengxiang, ZHOU Yunshui, HU Manjiang, et al. Robust accurate LiDAR-GNSS/IMU self-calibration based on iterative refinement[J]. IEEE Sensors Journal, 2023, 23(5): 5188–5199. doi: 10.1109/JSEN.2022.3233227
    [5]
    WEN Weisong, BAI Xiwei, KAN Y C, et al. Tightly coupled GNSS/INS integration via factor graph and aided by fish-eye camera[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11): 10651–10662. doi: 10.1109/TVT.2019.2944680
    [6]
    ZHONG Qiming and GROVES P D. Multi-epoch 3D-mapping-aided positioning using Bayesian filtering techniques[J]. NAVIGATION: Journal of the Institute of Navigation, 2022, 69(2): navi. 515. doi: 10.33012/navi.515.
    [7]
    NG H F, ZHANG Guohao, LUO Yiran, et al. Urban positioning: 3D mapping-aided GNSS using dual-frequency pseudorange measurements from smartphones[J]. NAVIGATION:Journal of the Institute of Navigation, 2021, 68(4): 727–749. doi: 10.1002/navi.448
    [8]
    WU Qingdong, LI Chenxi, SHEN Tao, et al. Improved adaptive iterated extended Kalman filter for GNSS/INS/UWB-integrated fixed-point positioning[J]. Computer Modeling in Engineering & Sciences, 2023, 134(3): 1761–1772. doi: 10.32604/cmes.2022.020545
    [9]
    JIANG Wei, CAO Zhuojian, CAI Baigen, et al. Indoor and outdoor seamless positioning method using UWB enhanced multi-sensor tightly-coupled integration[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 10633–10645. doi: 10.1109/TVT.2021.3110325
    [10]
    WANG Yuqiang, ZHAO Bohao, ZHANG Wei, et al. Simulation experiment and analysis of GNSS/INS/LEO/5G integrated navigation based on federated filtering algorithm[J]. Sensors, 2022, 22(2): 550. doi: 10.3390/s22020550
    [11]
    AYABAKAN T and KERESTECIOGLU F. RSSI-based indoor positioning via adaptive federated Kalman filter[J]. IEEE Sensors Journal, 2022, 22(6): 5302–5308. doi: 10.1109/JSEN.2021.3097249
    [12]
    杨元喜. 多源传感器动、静态滤波融合导航[J]. 武汉大学学报:信息科学版, 2003, 28(4): 386–388,396. doi: 10.3969/j.issn.1671-8860.2003.04.002

    YANG Yuanxi. Kinematic and static filtering for multi-sensor navigation systems[J]. Geomatics and Information Science of Wuhan University, 2003, 28(4): 386–388,396. doi: 10.3969/j.issn.1671-8860.2003.04.002
    [13]
    史兼郡, 邱磊, 王晓丹, 等. 基于动、静态滤波算法的组合导航技术研究[C]. 第六届中国卫星导航学术年会论文集—S09PNT体系与导航新技术, 西安, 中国, 2015: 130–133.

    SHI Jianjun, QIU Lei, WANG Xiaodan, et al. Research on integrated navigation technology based on the dynamic, static filtering algorithm[C]. China Satellite Navigation Conference, Xi’an, China, 2015: 130–133.
    [14]
    NING Yipeng, WANG Jian, HAN Houzeng, et al. An optimal radial basis function neural network enhanced adaptive robust Kalman filter for GNSS/INS integrated systems in complex urban areas[J]. Sensors, 2018, 18(9): 3091. doi: 10.3390/s18093091
    [15]
    DELLAERT F. Factor graphs and GTSAM: A hands-on introduction[R]. GT-RIM-CP&R-2012-002, 2012.
    [16]
    KAESS M, JOHANNSSON H, ROBERTS R, et al. iSAM2: Incremental smoothing and mapping using the Bayes tree[J]. The International Journal of Robotics Research, 2012, 31(2): 216–235. doi: 10.1177/0278364911430419
    [17]
    LIU Xiaohui, YUAN Yuelin, HUANG Jinquan, et al. A new algorithm of tightly-coupled GNSS/INS integrated navigation based on factor graph[M]. YANG Changfeng and XIE Jun. China Satellite Navigation Conference (CSNC 2021) Proceedings. Singapore: Springer, 2021: 586–595. doi: 10.1007/978-981-16-3142-9_56.
    [18]
    KAESS M, RANGANATHAN A, and DELLAERT F. iSAM: Incremental smoothing and mapping[J]. IEEE Transactions on Robotics, 2008, 24(6): 1365–1378. doi: 10.1109/TRO.2008.2006706
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (560) PDF downloads(95) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return