Advanced Search
Turn off MathJax
Article Contents
ZHOU Yi, JIN Zhanqi, SHI Huaguang, TIAN Yuxiang, SHI Lei, ZHANG Yanyu. Trajectory Optimization Research of Wireless Power Communication Networks Assisted by Aerial Intelligent Reflecting Surface[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT230830
Citation: ZHOU Yi, JIN Zhanqi, SHI Huaguang, TIAN Yuxiang, SHI Lei, ZHANG Yanyu. Trajectory Optimization Research of Wireless Power Communication Networks Assisted by Aerial Intelligent Reflecting Surface[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT230830

Trajectory Optimization Research of Wireless Power Communication Networks Assisted by Aerial Intelligent Reflecting Surface

doi: 10.11999/JEIT230830
Funds:  The National Natural Science Foundation of China (62176088, 62303159), International Strategic Innovative Project of National Key Research & Development Program of China (2023YFE0112500), The China Postdoctoral Science Foundation (2023M741008), The Program for Science & Technology Development of Henan Province (222102210022), The Young Elite Scientist Sponsorship Program by Henan Association for Science and Technology (2022HYTP013)
  • Received Date: 2023-08-02
  • Rev Recd Date: 2024-01-22
  • Available Online: 2024-02-19
  • Unmanned Aerial Vehicle (UAV) equipped with Intelligent Reflecting Surface (IRS) can effectively solve the problem of inefficient information and energy transmission between the hybrid access point and nodes in complex wireless scenarios due to obstacle occlusion. A novel framework for aerial IRS-assisted wireless powered communication networks is proposed that exploits the flexibility of aerial IRS to improve the performance of the network. The architecture achieves the transmission of energy and data for each time slot employing the harvest-then-transmit scheme. A multi-variable coupled optimization problem that combines the flight trajectory, node selection association variable, time slot allocation ratio, and the phase is established while satisfying the node energy harvesting threshold. Thus, the block coordinate descent algorithm is utilized to decompose the optimization problem into four sub-problems to be solved separately. Firstly, the closed-form solution for the optimal phase of the intelligent reflecting surface is derived based on the beam alignment theory. Secondly, the non-convex problem is transformed into a convex problem by introducing auxiliary variables and employing a successive convex approximation algorithm. Finally, the solution is iteratively solved utilizing the block coordinate descent algorithm. Simulation results show that the proposed scheme has excellent convergence performance and significantly improve the average throughput.
  • loading
  • [1]
    WANG Chengxiang, YOU Xiaohu, GAO Xiqi, et al. On the road to 6G: Visions, requirements, key technologies, and testbeds[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2): 905–974. doi: 10.1109/COMST.2023.3249835
    [2]
    朱政宇, 徐金雷, 孙钢灿, 等. 基于IRS辅助的SWIPT物联网系统安全波束成形设计[J]. 通信学报, 2021, 42(4): 185–193. doi: 10.11959/j.issn.1000-436x.2021060

    ZHU Zhengyu, XU Jinlei, SUN Gangcan, et al. Secure beamforming design for IRS-assisted SWIPT internet of things system[J]. Journal on Communications, 2021, 42(4): 185–193. doi: 10.11959/j.issn.1000-436x.2021060
    [3]
    LIU Heng, ZHANG Yan, GONG Shiqi, et al. Optimal transmission strategy and time allocation for RIS-enhanced partially WPSNs[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7207–7221. doi: 10.1109/TWC.2022.3156732
    [4]
    张晓茜, 徐勇军. 面向零功耗物联网的反向散射通信综述[J]. 通信学报, 2022, 43(11): 199–212. doi: 10.11959/j.issn.1000-436x.2022199

    ZHANG Xiaoqian and XU Yongjun. Survey on backscatter communication for zero-power IoT[J]. Journal on Communications, 2022, 43(11): 199–212. doi: 10.11959/j.issn.1000-436x.2022199
    [5]
    HUA Meng, WU Qingqing, and POOR H V. Power-efficient passive beamforming and resource allocation for IRS-aided WPCNs[J]. IEEE Transactions on Communications, 2022, 70(5): 3250–3265. doi: 10.1109/TCOMM.2022.3161688
    [6]
    王兆瑞, 刘亮, 李航, 等. 面向6G物联网的智能反射表面设计[J]. 物联网学报, 2020, 4(2): 84–95. doi: 10.11959/j.issn.2096-3750.2020.00160

    WANG Zhaorui, LIU Liang, LI Hang, et al. Intelligent reflecting surface design for 6G-assited internet of things[J]. Chinese Journal on Internet of Things, 2020, 4(2): 84–95. doi: 10.11959/j.issn.2096-3750.2020.00160
    [7]
    WU Qingqing, ZHANG Shuowen, ZHENG Beixiong, et al. Intelligent reflecting surface-aided wireless communications: A tutorial[J]. IEEE Transactions on Communications, 2021, 69(5): 3313–3351. doi: 10.1109/TCOMM.2021.3051897
    [8]
    PAN Qianqian, WU Jun, ZHANG Xi, et al. Differential privacy and IRS empowered intelligent energy harvesting for 6G internet of things[J]. IEEE Internet of Things Journal, 2022, 9(22): 22109–22122. doi: 10.1109/JIOT.2021.3104833
    [9]
    WU Qingqing, GUAN Xinrong, and ZHANG Rui. Intelligent reflecting surface-aided wireless energy and information transmission: An overview[J]. Proceedings of the IEEE, 2022, 110(1): 150–170. doi: 10.1109/JPROC.2021.3121790
    [10]
    WU Qingqing, ZHOU Xiaobo, CHEN Wen, et al. IRS-aided WPCNs: A new optimization framework for dynamic IRS beamforming[J]. IEEE Transactions on Wireless Communications, 2022, 21(7): 4725–4739. doi: 10.1109/TWC.2021.3132666
    [11]
    ZHU Lipeng, ZHANG Jun, XIAO Zhenyu, et al. Millimeter-wave full-duplex UAV relay: Joint positioning, beamforming, and power control[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(9): 2057–2073. doi: 10.1109/JSAC.2020.3000879
    [12]
    李斌, 刘文帅, 谢万城, 等. 智能反射面赋能无人机边缘网络计算卸载方案[J]. 通信学报, 2022, 43(10): 223–233. doi: 10.11959/j.issn.1000-436x.2022196

    LI Bin, LIU Wenshuai, XIE Wancheng, et al. Computation offloading scheme for RIS-empowered UAV edge network[J]. Journal on Communications, 2022, 43(10): 223–233. doi: 10.11959/j.issn.1000-436x.2022196
    [13]
    刘志新, 赵松晗, 杨毅, 等. 智能反射面辅助的无人机无线携能通信网络吞吐量最大化算法研究[J]. 电子与信息学报, 2022, 44(7): 2325–2331. doi: 10.11999/JEIT220195

    LIU Zhixin, ZHAO Songhan, YANG Yi, et al. Throughput maximization algorithm for intelligent reflecting surface-aided unmanned aerial vehicle communication networks with wireless energy transfer[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2325–2331. doi: 10.11999/JEIT220195
    [14]
    LI Sixian, DUO Bin, YUAN Xiaojun, et al. Reconfigurable intelligent surface assisted UAV communication: Joint trajectory design and passive beamforming[J]. IEEE Wireless Communications Letters, 2020, 9(5): 716–720. doi: 10.1109/LWC.2020.2966705
    [15]
    MEI Haibo, YANG Kun, LIU Qiang, et al. 3D-trajectory and phase-shift design for RIS-assisted UAV systems using deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2022, 71(3): 3020–3029. doi: 10.1109/TVT.2022.3143839
    [16]
    GUROBI. GUROBI mathematical optimization solver[EB/OL]. https://www.gurobi.com/, 2019.
    [17]
    GRANT M C and BOYD S P. Graph implementations for nonsmooth convex programs[C]. Recent Advances in Learning and Control, London, UK, 2008: 95–110.
    [18]
    LIU Yuan, HAN Pengxia, and ZHAO Shengjie. Flexible and reliable multiuser SWIPT IoT network enhanced by UAV-mounted intelligent reflecting surface[J]. IEEE Transactions on Reliability, 2022, 71(2): 1092–1103. doi: 10.1109/TR.2022.3161336
    [19]
    ZHOU Yi, JIN Zhanqi, SHI Huaguang, et al. Flying IRS: QoE-driven trajectory optimization and resource allocation based on adaptive deployment for WPCNs in 6G IoT[J]. IEEE Internet of Things Journal.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (93) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return