| Citation: | GU Wei, XING Hongyan, HOU Tianhao. Abnormal Traffic Detection Method Based on Traffic Spatial-temporal Features and Adaptive Weighting Coefficients[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2647-2654. doi: 10.11999/JEIT230825 | 
 
	                | [1] | IMRANA Y, XIANG YANPING, ALI L, et al. A bidirectional lstm deep learning approach for intrusion detection[J]. Expert Systems with Applications, 2021, 185: 115524. doi:  10.1016/j.eswa.2021.115524. | 
| [2] | Kasperky. 安全报告[EB/OL]. https://www.kaspersky.com.cn/about/press-releases/2023_phishing, 2023. | 
| [3] | IKRAM S T and CHERUKURI A K. Improving accuracy of intrusion detection model using PCA and optimized SVM[J]. Journal of Computing and Information Technology, 2016, 24(2): 133–148. doi:  10.20532/cit.2016.1002701. | 
| [4] | WANG Huiwen, GU Jie, WANG Shanshan, et al. An effective intrusion detection framework based on SVM with feature augmentation[J]. Knowledge-Based Systems, 2017, 136: 130–139. doi:  10.1016/j.knosys.2017.09.014. | 
| [5] | 潘成胜, 李志祥, 杨雯升, 等. 基于二次特征提取和BiLSTM-Attention的网络流量异常检测方法[J]. 电子与信息学报, 2023, 45(12): 4539–4547. doi:  10.11999/JEIT221296. PAN Chengsheng, LI Zhixiang, YANG Wensheng, et al. Anomaly detection method of network traffic based on secondary feature extraction and BiLSTM-attention[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4539–4547. doi:  10.11999/JEIT221296. | 
| [6] | LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi:  10.1038/nature14539. | 
| [7] | LI Yanmiao, XU Yingying, LIU Zhi, et al. Robust detection for network intrusion of industrial IoT based on multi-CNN fusion[J]. Measurement, 2020, 154: 107450. doi:  10.1016/j.measurement.2019.107450. | 
| [8] | 陈思佳, 罗志增. 基于长短时记忆和卷积神经网络的手势肌电识别研究[J]. 仪器仪表学报, 2021, 42(2): 162–170. CHEN Sijia and LUO Zhizeng. Research on gesture EMG recognition based on long short-term memory and convolutional neural network[J]. Chinese Journal of Scientific Instrument, 2021, 42(2): 162–170. doi:  10.19650/j.cnki.cjsi.J2007103. | 
| [9] | KANNA P R and SANTHI P. Unified deep learning approach for efficient intrusion detection system using integrated spatial–temporal features[J]. Knowledge-Based Systems, 2021, 226: 107132. doi:  10.1016/j.knosys.2021.107132. | 
| [10] | JIANG Feng, FU Yunsheng, GUPTA B B, et al. Deep learning based multi-channel intelligent attack detection for data security[J]. IEEE transactions on Sustainable Computing, 2020, 5(2): 204–212. doi:  10.1109/TSUSC.2018.2793284. | 
| [11] | SIVAMOHAN S, SRIDHAR S S, and KRISHNAVENI S. An effective recurrent neural network (RNN) based intrusion detection via bi-directional long short-term memory[C]. 2021 International Conference on Intelligent Technologies (CONIT), Hubli, India, 2021: 1–5. doi:  10.1109/CONIT51480.2021.9498552. | 
| [12] | HUANG Buliao, ZHU Yunhui, USMAN M, et al. Graph neural networks for missing value classification in a task-driven metric space[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(8): 8073–8084. doi:  10.1109/TKDE.2022.3198689. | 
| [13] | HAO Yi, LI Jie, WANG Nanan, et al. Spatiotemporal consistency-enhanced network for video anomaly detection[J]. Pattern Recognition, 2022, 121: 108232. doi:  10.1016/j.patcog.2021.108232. | 
| [14] | XU Lixiang, ZHOU Biao, LI Xinlu, et al. Gaussian process image classification based on multi-layer convolution kernel function[J]. Neurocomputing, 2022, 480: 99–109. doi:  10.1016/j.neucom.2022.01.048. | 
| [15] | HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141. doi:  10.1109/CVPR.2018.00745. | 
| [16] | HOCHREITER S and SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. doi:  10.1162/neco.1997.9.8.1735. | 
| [17] | GEETHA T V and DEEPA A J. A FKPCA-GWO WDBiLSTM classifier for intrusion detection system in cloud environments[J]. Knowledge-Based Systems, 2022, 253: 109557. doi:  10.1016/j.knosys.2022.109557. | 
| [18] | TAVALLAEE M, BAGHERI E, LU Wei,    et al. A detailed analysis of the KDD CUP 99 data set[C]. 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, Canada, 2009: 1–6. doi:  10.1109/CISDA.2009.5356528. | 
| [19] | FATANI A, ABD ELAZIZ M, DAHOU A, et al. IoT intrusion detection system using deep learning and enhanced transient search optimization[J]. IEEE Access, 2021, 9: 123448–123464. doi:  10.1109/ACCESS.2021.3109081. | 
| [20] | ABD ELAZIZ M, AL-QANESS M A A, DAHOU A, et al. Intrusion detection approach for cloud and IoT environments using deep learning and Capuchin Search Algorithm[J]. Advances in Engineering Software, 2023, 176: 103402. doi:  10.1016/j.advengsoft.2022.103402. | 
| [21] | XU Xing, LI Jie, YANG Yang, et al. Toward effective intrusion detection using log-cosh conditional variational autoencoder[J]. IEEE Internet of Things Journal, 2021, 8(8): 6187–6196. doi:  10.1109/JIOT.2020.3034621. | 
