Advanced Search
Volume 46 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
HUI Yajuan, LI Qingzhen, WANG Leimin, LIU Cheng. In-memory Wallace Tree Multipliers Based on Majority Gates with Voltage Gated Spin-Orbit Torque Magnetoresistive Random Access Memory Devices[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2673-2680. doi: 10.11999/JEIT230815
Citation: HUI Yajuan, LI Qingzhen, WANG Leimin, LIU Cheng. In-memory Wallace Tree Multipliers Based on Majority Gates with Voltage Gated Spin-Orbit Torque Magnetoresistive Random Access Memory Devices[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2673-2680. doi: 10.11999/JEIT230815

In-memory Wallace Tree Multipliers Based on Majority Gates with Voltage Gated Spin-Orbit Torque Magnetoresistive Random Access Memory Devices

doi: 10.11999/JEIT230815
Funds:  The National Natural Science Foundation of China (62104217)
  • Received Date: 2023-08-01
  • Rev Recd Date: 2023-11-26
  • Available Online: 2023-11-29
  • Publish Date: 2024-06-30
  • In the research on utilizing emerging non-volatile storage arrays for in-memory computing, the latency of in-memory multipliers often exhibits exponential growth with increasing bit width, and significantly impacts the computational performance. A Voltage-Gated Spin-Orbit Torque Magnetoresistive Random-Acess Memory (VGSOT-MRAM) device unit crossbar array is proposed and a circuit design approach for in-memory Wallace tree multipliers is presented in this paper. The proposed series-connected storage unit structure effectively addresses the issue of low resistance values in magnetic storage units through resistive summing. Furthermore, an in-memory computing architecture based on a voltage-controlled spin-orbit torque magnetic storage unit crossbar array is introduced. Finally, a five-input majority decision logic gate implemented during the “read” operation is leveraged to further reduce the logic depth of the Wallace tree multiplier. Compared to existing multiplier design methods, the proposed approach reduces the delay overhead from O(n2) to O(log2 n), with even lower latency for larger bit widths.
  • loading
  • [1]
    PARHAMI B. Computer Arithmetic: Algorithms and Hardware Designs[M]. New York: Oxford University Press, 2000.
    [2]
    JIANG Honglan, ANGIZI S, FAN Deliang, et al. Non-volatile approximate arithmetic circuits using scalable hybrid spin-CMOS majority gates[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2021, 68(3): 1217–1230. doi: 10.1109/TCSI.2020.3044728.
    [3]
    CAI Hao, GUO Yanan, LIU Bo, et al. Proposal of analog in-memory computing with magnified tunnel magnetoresistance ratio and universal STT-MRAM cell[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2022, 69(4): 1519–1531. doi: 10.1109/TCSI.2022.3140769.
    [4]
    ZHOU Feichi and CHAI Yang. Near-sensor and in-sensor computing[J]. Nature Electronics, 2020, 3(11): 664–671. doi: 10.1038/s41928-020-00501-9.
    [5]
    YUE Zhiheng, WANG Yabing, QIN Yubin, et al. BR-CIM: An efficient binary representation computation-in-memory design[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2022, 69(10): 3940–3953. doi: 10.1109/TCSI.2022.3185135.
    [6]
    WANG Jinkai, BAI Yining, WANG Hongyu, et al. Reconfigurable bit-serial operation using toggle SOT-MRAM for high-performance computing in memory architecture[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2022, 69(11): 4535–4545. doi: 10.1109/TCSI.2022.3192165.
    [7]
    GUCKERT L and SWARTZLANDER E E. Optimized memristor-based multipliers[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64(2): 373–385. doi: 10.1109/TCSI.2016.2606433.
    [8]
    GUCKERT L and SWARTZLANDER E E. Dadda multiplier designs using memristors[C]. 2017 IEEE International Conference on IC Design and Technology (ICICDT), Austin, USA, 2017: 1–4. doi: 10.1109/ICICDT.2017.7993521.
    [9]
    RADAKOVITS D, TAHERINEJAD N, CAI Mengye, et al. A memristive multiplier using semi-serial IMPLY-based adder[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2020, 67(5): 1495–1506. doi: 10.1109/TCSI.2020.2965935.
    [10]
    LEITERSDORF O, RONEN R, and KVATINSKY S. MultPIM: Fast stateful multiplication for processing-in-memory[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2022, 69(3): 1647–1651. doi: 10.1109/TCSII. 2021.3118215.
    [11]
    LAKSHMI V, REUBEN J, and PUDI V. A novel in-memory wallace tree multiplier architecture using majority logic[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2022, 69(3): 1148–1158. doi: 10.1109/TCSI.2021.3129827.
    [12]
    KIM Y S, SON M W, and KIM K M. Memristive stateful logic for edge Boolean computers[J]. Advanced Intelligent Systems, 2021, 3(7): 2000278. doi: 10.1002/aisy.202000278.
    [13]
    REUBEN J and PECHMANN S. Accelerated addition in resistive RAM array using parallel-friendly majority gates[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29(6): 1108–1121. doi: 10.1109/TVLSI.2021.3068470.
    [14]
    SHREYA S, VERMA G, PIRAMANAYAGAM S N, et al. Energy-efficient all-spin BNN using voltage-controlled spin-orbit torque device for digit recognition[J]. IEEE Transactions on Electron Devices, 2021, 68(1): 385–392. doi: 10.1109/TED.2020.3038140.
    [15]
    SHREYA S, JAIN A, and KAUSHIK B K. Computing-in-memory architecture using energy-efficient multilevel voltage-controlled spin-orbit torque device[J]. IEEE Transactions on Electron Devices, 2020, 67(5): 1972–1979. doi: 10.1109/TED.2020.2978085.
    [16]
    JUNG S, LEE H, MYUNG S, et al. A crossbar array of magnetoresistive memory devices for in-memory computing[J]. Nature, 2022, 601(7892): 211–216. doi: 10.1038/s41586-021-04196-6.
    [17]
    WU Y C, GARELLO K, KIM W, et al. Voltage-gate-assisted spin-orbit-torque magnetic random-access memory for high-density and low-power embedded applications[J]. Physical Review Applied, 2021, 15(6): 064015. doi: 10.1103/PhysRevApplied.15.064015.
    [18]
    JIANG Linjun, DENG Erya, ZHANG He, et al. A spintronic in-memory computing network for efficient hamming codec implementation[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2022, 69(4): 2086–2090. doi: 10.1109/TCSII.2022.3144678.
    [19]
    ZHANG Kaili, ZHANG Deming, WANG Chengzhi, et al. Compact modeling and analysis of voltage-gated spin-orbit torque magnetic tunnel junction[J]. IEEE Access, 2020, 8: 50792–50800. doi: 10.1109/ACCESS.2020.2980073.
    [20]
    WU Bi, ZHU Haonan, CHEN Ke, et al. MLiM: High-performance magnetic logic in-memory scheme with unipolar switching SOT-MRAM[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2023, 70(6): 2412–2424. doi: 10.1109/TCSI.2023.3254607.
    [21]
    WU Bi, WANG Chao, WANG Zhaohao, et al. Field-free 3T2SOT MRAM for non-volatile cache memories[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2020, 67(12): 4660–4669. doi: 10.1109/TCSI.2020.3020798.
    [22]
    ZHANG Xueyong, AN B K, and KIM T T H. A robust time-based multi-level sensing circuit for resistive memory[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2023, 70(1): 340–352. doi: 10.1109/TCSI.2022.3211989.
    [23]
    TRINH Q K, RUOCCO S, and ALIOTO M. Time-based sensing for reference-less and robust read in STT-MRAM memories[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2018, 65(10): 3338–3348. doi: 10.1109/TCSI.2018.2828611.
    [24]
    LI Wei, YANG Yang, YAN Hao, et al. Three-input majority logic gate and multiple input logic circuit based on DNA strand displacement[J]. Nano Letters, 2013, 13(6): 2980–2988. doi: 10.1021/nl4016107.
    [25]
    AHMADPOUR S S, MOSLEH M, and RASOULI HEIKALABAD S. Robust QCA full-adders using an efficient fault-tolerant five-input majority gate[J]. International Journal of Circuit Theory and Applications, 2019, 47(7): 1037–1056. doi: 10.1002/cta.2634.
    [26]
    IMANI M, GUPTA S, and ROSING T. Ultra-efficient processing in-memory for data intensive applications[C]. The 54th Annual Design Automation Conference 2017, Austin, USA, 2017: 6. doi: 10.1145/3061639.3062337.
    [27]
    HAJ-ALI A, BEN-HUR R, WALD N, et al. Efficient algorithms for in-memory fixed point multiplication using magic[C]. 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 2018: 1–5. doi: 10.1109/ISCAS.2018.8351561.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (505) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return