Advanced Search
Volume 45 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
AN Chengjin, YANG Jungang, LIANG Zhengyu, CHEN Qianyu, ZENG Yaoyuan, AN Wei. Closely Spaced Objects Super-resolution Method Using Array Camera Images[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4050-4059. doi: 10.11999/JEIT230810
Citation: AN Chengjin, YANG Jungang, LIANG Zhengyu, CHEN Qianyu, ZENG Yaoyuan, AN Wei. Closely Spaced Objects Super-resolution Method Using Array Camera Images[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4050-4059. doi: 10.11999/JEIT230810

Closely Spaced Objects Super-resolution Method Using Array Camera Images

doi: 10.11999/JEIT230810
Funds:  The National Natural Science Foundation of China (61921001), The Research Funding of Satellite Indormation Intelligent Processing and Application Research Laboratory (2022-ZZKY-JJ-14-01)
  • Received Date: 2023-08-01
  • Rev Recd Date: 2023-09-27
  • Available Online: 2023-10-10
  • Publish Date: 2023-11-28
  • The aerial targets are usually far from the imaging system, making the imaged results have weak radiation intensity and limited imaging area. Especially when aerial target groups are distributed in a dense form, make further the imaged results have overlapping projection of such dense targets, and limit the performance of subsequent detection, track, and identification tasks. The array camera imaging system can provide complementary information about the target from multiple views and make effectively up for the deficiency of a single camera in detecting the resolution of nearby aerial targets. In this paper, the geometric relationship between nearby aerial targets and array cameras is studied and a super-resolution method for nearby targets based on sparse reconstruction of array camera images is proposed. Thanks to the prior assumption of sparsity of nearby aerial targets on the image plane and the transfer constraints between multiple views of array cameras regarding the target, relevant simulation experiments show that the proposed method can well super-resolve the obtained images of nearby targets and estimate effectively the position and number of nearby aerial targets.
  • loading
  • [1]
    林两魁, 徐晖, 安玮, 等. 基于粒子群优化的空间邻近目标红外超分辨算法[J]. 光学学报, 2010, 30(6): 1645–1650. doi: 10.3788/AOS20103006.1645

    LIN Liangkui, XU Hui, AN Wei, et al. Closely spaced objects infrared super-resolution algorithm based on particle swarm optimization[J]. Acta Optica Sinica, 2010, 30(6): 1645–1650. doi: 10.3788/AOS20103006.1645
    [2]
    GREEN P J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination[J]. Biometrika, 1995, 82(4): 711–732. doi: 10.1093/biomet/82.4.711
    [3]
    SUN Guanqun, ZHANG Fangzheng, PAN Shilong, et al. Adaptive super resolution array radar imaging based on sparse reconstruction and effective rank theory[C]. The 24th International Radar Symposium, Berlin, Germany, 2023: 1–7.
    [4]
    张慧, 徐晖, 林两魁. 基于稀疏重构的空间邻近目标红外单帧图像超分辨方法[J]. 光学学报, 2013, 33(4): 0411001. doi: 10.3788/AOS201333.0411001

    ZHANG Hui, XU Hui, and LIN Liangkui. Super-resolution method of closely spaced objects based on sparse reconstruction using single frame infrared data[J]. Acta Optica Sinica, 2013, 33(4): 0411001. doi: 10.3788/AOS201333.0411001
    [5]
    LI Xiaosong, ZHOU Fuqiang, and TAN Haishu. Joint image fusion and denoising via three-layer decomposition and sparse representation[J]. Knowledge-Based Systems, 2021, 224: 107087. doi: 10.1016/j.knosys.2021.107087
    [6]
    XIE Yutong and LI Quanzheng. A review of deep learning methods for compressed sensing image reconstruction and its medical applications[J]. Electronics, 2022, 11(4): 586. doi: 10.3390/electronics11040586
    [7]
    EL MAHDAOUI A, OUAHABI A, and MOULAY M S. Image denoising using a compressive sensing approach based on regularization constraints[J]. Sensors, 2022, 22(6): 2199. doi: 10.3390/s22062199
    [8]
    张熙凡, 于凌志. 基于低秩降维和稀疏重构的图像扰动防御算法[J]. 激光与光电子学进展, 2022, 59(12): 1210004. doi: 10.3788/LOP202259.1210004

    ZHANG Xifan and YU Lingzhi. Image defense algorithm against adversarial attacks based on low-rank dimensionality reduction and sparse reconstruction[J]. Laser&Optoelectronics Progress, 2022, 59(12): 1210004. doi: 10.3788/LOP202259.1210004
    [9]
    CANDES E J and WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21–30. doi: 10.1109/MSP.2007.914731
    [10]
    MALLAT S G and ZHANG Zhifeng. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397–3415. doi: 10.1109/78.258082
    [11]
    TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/TIT.2007.909108
    [12]
    BLUMENSATH T and DAVIES M E. Iterative hard thresholding for compressed sensing[J]. Applied and Computational Harmonic Analysis, 2009, 27(3): 265–274. doi: 10.1016/j.acha.2009.04.002
    [13]
    贺月, 柳建新, 王显莹, 等. 基于自适应字典学习的插值去噪的应用[J]. 地球物理学进展, 2021, 36(6): 2454–2461. doi: 10.6038/pg2021EE0480

    HE Yue, LIU Jianxin, WANG Xianying, et al. Application of interpolation denoising based on adaptive dictionary learning[J]. Progress in Geophysics, 2021, 36(6): 2454–2461. doi: 10.6038/pg2021EE0480
    [14]
    潘辉, 印兴耀, 李坤, 等. 基于经验模态分解字典的自适应匹配追踪谱分解方法及其在油气检测中的应用[J]. 石油地球物理勘探, 2021, 56(5): 1117–1129, 2020–2021.

    PAN Hui, YIN Xingyao, LI Kun, et al. Spectral decomposition method of adaptive matching pursuit based on empirical mode decomposition dictionary and its application in oil and gas detection[J]. Oil Geophysical Prospecting, 2021, 56(5): 1117–1129, 2020–2021.
    [15]
    FIGUEIREDO M A T, NOWAK R D, and WRIGHT S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586–597. doi: 10.1109/JSTSP.2007.910281
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (377) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return