Citation: | AN Chengjin, YANG Jungang, LIANG Zhengyu, CHEN Qianyu, ZENG Yaoyuan, AN Wei. Closely Spaced Objects Super-resolution Method Using Array Camera Images[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4050-4059. doi: 10.11999/JEIT230810 |
[1] |
林两魁, 徐晖, 安玮, 等. 基于粒子群优化的空间邻近目标红外超分辨算法[J]. 光学学报, 2010, 30(6): 1645–1650. doi: 10.3788/AOS20103006.1645
LIN Liangkui, XU Hui, AN Wei, et al. Closely spaced objects infrared super-resolution algorithm based on particle swarm optimization[J]. Acta Optica Sinica, 2010, 30(6): 1645–1650. doi: 10.3788/AOS20103006.1645
|
[2] |
GREEN P J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination[J]. Biometrika, 1995, 82(4): 711–732. doi: 10.1093/biomet/82.4.711
|
[3] |
SUN Guanqun, ZHANG Fangzheng, PAN Shilong, et al. Adaptive super resolution array radar imaging based on sparse reconstruction and effective rank theory[C]. The 24th International Radar Symposium, Berlin, Germany, 2023: 1–7.
|
[4] |
张慧, 徐晖, 林两魁. 基于稀疏重构的空间邻近目标红外单帧图像超分辨方法[J]. 光学学报, 2013, 33(4): 0411001. doi: 10.3788/AOS201333.0411001
ZHANG Hui, XU Hui, and LIN Liangkui. Super-resolution method of closely spaced objects based on sparse reconstruction using single frame infrared data[J]. Acta Optica Sinica, 2013, 33(4): 0411001. doi: 10.3788/AOS201333.0411001
|
[5] |
LI Xiaosong, ZHOU Fuqiang, and TAN Haishu. Joint image fusion and denoising via three-layer decomposition and sparse representation[J]. Knowledge-Based Systems, 2021, 224: 107087. doi: 10.1016/j.knosys.2021.107087
|
[6] |
XIE Yutong and LI Quanzheng. A review of deep learning methods for compressed sensing image reconstruction and its medical applications[J]. Electronics, 2022, 11(4): 586. doi: 10.3390/electronics11040586
|
[7] |
EL MAHDAOUI A, OUAHABI A, and MOULAY M S. Image denoising using a compressive sensing approach based on regularization constraints[J]. Sensors, 2022, 22(6): 2199. doi: 10.3390/s22062199
|
[8] |
张熙凡, 于凌志. 基于低秩降维和稀疏重构的图像扰动防御算法[J]. 激光与光电子学进展, 2022, 59(12): 1210004. doi: 10.3788/LOP202259.1210004
ZHANG Xifan and YU Lingzhi. Image defense algorithm against adversarial attacks based on low-rank dimensionality reduction and sparse reconstruction[J]. Laser&Optoelectronics Progress, 2022, 59(12): 1210004. doi: 10.3788/LOP202259.1210004
|
[9] |
CANDES E J and WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21–30. doi: 10.1109/MSP.2007.914731
|
[10] |
MALLAT S G and ZHANG Zhifeng. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397–3415. doi: 10.1109/78.258082
|
[11] |
TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/TIT.2007.909108
|
[12] |
BLUMENSATH T and DAVIES M E. Iterative hard thresholding for compressed sensing[J]. Applied and Computational Harmonic Analysis, 2009, 27(3): 265–274. doi: 10.1016/j.acha.2009.04.002
|
[13] |
贺月, 柳建新, 王显莹, 等. 基于自适应字典学习的插值去噪的应用[J]. 地球物理学进展, 2021, 36(6): 2454–2461. doi: 10.6038/pg2021EE0480
HE Yue, LIU Jianxin, WANG Xianying, et al. Application of interpolation denoising based on adaptive dictionary learning[J]. Progress in Geophysics, 2021, 36(6): 2454–2461. doi: 10.6038/pg2021EE0480
|
[14] |
潘辉, 印兴耀, 李坤, 等. 基于经验模态分解字典的自适应匹配追踪谱分解方法及其在油气检测中的应用[J]. 石油地球物理勘探, 2021, 56(5): 1117–1129, 2020–2021.
PAN Hui, YIN Xingyao, LI Kun, et al. Spectral decomposition method of adaptive matching pursuit based on empirical mode decomposition dictionary and its application in oil and gas detection[J]. Oil Geophysical Prospecting, 2021, 56(5): 1117–1129, 2020–2021.
|
[15] |
FIGUEIREDO M A T, NOWAK R D, and WRIGHT S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586–597. doi: 10.1109/JSTSP.2007.910281
|