Advanced Search
Volume 45 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
LI Can, LIU Wei, ZHAO Sudun, LEI Jing. Velocity Measurement Algorithm Base on Correlation Over Multi-frame with IEEE 802.11 ad[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4026-4032. doi: 10.11999/JEIT230807
Citation: LI Can, LIU Wei, ZHAO Sudun, LEI Jing. Velocity Measurement Algorithm Base on Correlation Over Multi-frame with IEEE 802.11 ad[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4026-4032. doi: 10.11999/JEIT230807

Velocity Measurement Algorithm Base on Correlation Over Multi-frame with IEEE 802.11 ad

doi: 10.11999/JEIT230807
  • Received Date: 2023-08-01
  • Rev Recd Date: 2023-10-09
  • Available Online: 2023-10-14
  • Publish Date: 2023-11-28
  • Waveform design is one of the critical technologies for achieving integrated sensing and communication, which is beneficial for alleviating the pressure of spectrum competition and saving resources. In this paper, a velocity measurement algorithm in Vehicle-to-everything(V2X) communications with IEEE 802.11ad wireless local area network waveform is proposed. Firstly, as the preamble in the physical layer frame structure has an ideal characteristic suitable for target sensing, the preambles of the received multi-frame signals are performed correlation operations at different moving steps, then the Doppler shift which is used for velocity measurement is obtained by converting Doppler frequency offset estimation into linear regression slope estimation. Secondly, in order to solve the problem of limited velocity measurement range caused by phase ambiguity, a phase compensation scheme is proposed. The simulation results show that the proposed algorithm can achieve centimeter-level accuracy in single target and LOS scenarios, and has lower velocity measurement error than the current similar algorithm.
  • loading
  • [1]
    ZHANG J A, LIU Fan, MASOUROS C, et al. An overview of signal processing techniques for joint communication and radar sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1295–1315. doi: 10.1109/JSTSP.2021.3113120
    [2]
    LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632
    [3]
    张大庆, 张扶桑, 吴丹, 等. 基于CSI的通信感知一体化设计: 问题、挑战和展望[J]. 移动通信, 2022, 46(5): 9–16. doi: 10.3969/j.issn.1006-1010.2022.05.002

    ZHANG Daqing, ZHANG Fusang, WU Dan, et al. Design of CSI-based integrated sensing and communication: Issues, challenges and prospects[J]. Mobile Communications, 2022, 46(5): 9–16. doi: 10.3969/j.issn.1006-1010.2022.05.002
    [4]
    WANG Zhiqin, HAN Kaifeng, JIANG Jiamo, et al. Symbiotic sensing and communications towards 6G: Vision, applications, and technology trends[C]. 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), Norman, USA, 2021: 1–5.
    [5]
    GAGLIONE D, CLEMENTE C, ILIOUDIS C V, et al. Fractional Fourier based waveform for a joint radar-communication system[C]. 2016 IEEE Radar Conference (RadarConf), Philadelphia, USA, 2016: 1–6.
    [6]
    ZHENG Le, LOPS M, ELDAR Y C, et al. Radar and communication coexistence: An overview: A review of recent methods[J]. IEEE Signal Processing Magazine, 2019, 36(5): 85–99. doi: 10.1109/MSP.2019.2907329
    [7]
    JAMIL M, ZEPERNICK H J, and PETTERSSON M I. On integrated radar and communication systems using Oppermann sequences[C]. MILCOM 2008 - 2008 IEEE Military Communications Conference, San Diego, USA, 2008: 1–6.
    [8]
    BASAR E, WEN Miaowen, MESLEH R, et al. Index modulation techniques for next-generation wireless networks[J]. IEEE Access, 2017, 5: 16693–16746. doi: 10.1109/ACCESS.2017.2737528
    [9]
    HASCH J, TOPAK E, SCHNABEL R, et al. Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(3): 845–860. doi: 10.1109/TMTT.2011.2178427
    [10]
    BILIK I. Comparative analysis of radar and lidar technologies for automotive applications[J]. IEEE Intelligent Transportation Systems Magazine, 2023, 15(1): 244–269. doi: 10.1109/MITS.2022.3162886
    [11]
    SEHLA K, NGUYEN T M T, PUJOLLE G, et al. Resource allocation modes in C-V2X: From LTE-V2X to 5G-V2X[J]. IEEE Internet of Things Journal, 2022, 9(11): 8291–8314. doi: 10.1109/JIOT.2022.3159591
    [12]
    ETSI. ETSI TS 122 186 V16.2. 0 (2020-11) 5G; Service requirements for enhanced V2X scenarios[S]. ETSI: Nice, 2020.
    [13]
    MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. Joint radar-communication strategies for autonomous vehicles: Combining two key automotive technologies[J]. IEEE Signal Processing Magazine, 2020, 37(4): 85–97. doi: 10.1109/MSP.2020.2983832
    [14]
    CUI Yuanhao, LIU Fan, JING Xiaojun, et al. Integrating sensing and communications for ubiquitous IoT: Applications, trends, and challenges[J]. IEEE Network, 2021, 35(5): 158–167. doi: 10.1109/MNET.010.2100152
    [15]
    REICHARDT L, STURM C, GRÜNHAUPT F, et al. Demonstrating the use of the IEEE 802.11P Car-to-Car communication standard for automotive radar[C]. 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 2012: 1576–1580.
    [16]
    NGUYEN D H N and HEATH R W. Delay and Doppler processing for multi-target detection with IEEE 802.11 OFDM signaling[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, USA, 2017: 3414–3418.
    [17]
    KUMARI P, GONZALEZ-PRELCIC N, and HEATH R W. Investigating the IEEE 802.11ad standard for millimeter wave automotive radar[C]. 2015 IEEE 82nd Vehicular Technology Conference (VTC Fall), Boston, USA, 2015: 1–5.
    [18]
    KUMARI P, CHOI J, GONZÁLEZ-PRELCIC N, et al. IEEE 802.11ad-based radar: An approach to joint vehicular communication-radar system[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3012–3027. doi: 10.1109/TVT.2017.2774762
    [19]
    HAN G, KIM S, and CHOI J. Multi-vehicle velocity estimation using IEEE 802.11ad waveform[C]. 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, 2021: 4550–4554.
    [20]
    HAN G, CHOI J, and HEATH R W. Radar imaging based on IEEE 802.11ad waveform in V2I communications[J]. IEEE Transactions on Signal Processing, 2022, 70: 4981–4996. doi: 10.1109/TSP.2022.3213488
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (224) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return