Advanced Search
Volume 45 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
LIANG Kun, WEI Baoying. Research on Distributed Ensemble Time Scale for Railway Time Synchronization Network[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4127-4136. doi: 10.11999/JEIT230806
Citation: LIANG Kun, WEI Baoying. Research on Distributed Ensemble Time Scale for Railway Time Synchronization Network[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4127-4136. doi: 10.11999/JEIT230806

Research on Distributed Ensemble Time Scale for Railway Time Synchronization Network

doi: 10.11999/JEIT230806
Funds:  The National Key R&D Program of China (2021YFB3900704), The Open Foundation of National Railway Intelligence Transportation System Engineering Technology Research Center
  • Received Date: 2023-08-01
  • Rev Recd Date: 2023-10-24
  • Available Online: 2023-10-30
  • Publish Date: 2023-11-28
  • The railway time synchronization network provides the standard time quantity value for various railway systems. The accuracy and stability of the time quantity value have an important impact on the safe and the efficient operation of the railway systems. There are three potential problems with the current railway time synchronization network. The traceability references of each time node are inconsistent, and the time of each node is not accurately traced to Coordinated Universal Time (UTC). Only one primary time node is set. The secondary and the tertiary time nodes are greatly affected by the failure of the primary time node, and lack of robustness. Monitoring methods are only used a single time node. There is no automatic monitoring method at the overall level. In view of the above potential problems, the distributed Ensemble Time scale (TE) for railway time synchronization network that can accurately trace to UTC is proposed. A simulation model of railway time synchronization network is established, and a TE algorithm is designed. TE is generated by 19 atomic clocks from the primary and the secondary time nodes. The results show that the time differences between TE and UTC can be better than 30 ns. The uncertainty of TE-UTC is better than 5 ns. When the primary time node works normally, the time stability of the secondary time node can be improved about 40% by introducing TE. When the primary time node fails, TE can be continuously generated and used as a unified traceability reference. The frequency and time stability of the secondary time node under the TE synchronization architecture is about 35% higher than that under the traditional synchronization architecture. The time differences between any time nodes can be obtained based on TE. By analyzing the time differences data, automatic monitoring of all time nodes and the continuity of Precision Time Protocol (PTP) links at the overall level can be realized.
  • loading
  • [1]
    于佳亮, 程华, 于天泽, 等. 基于北斗卫星同步授时的应用研究与试验[J]. 中国铁路, 2013(4): 18–21. doi: 10.3969/j.issn.1001-683X.2013.04.005

    YU Jialiang, CHENG Hua, YU Tianze, et al. Application research and experiment of synchronous timing service based on Beidou satellite[J]. Chinese Railways, 2013(4): 18–21. doi: 10.3969/j.issn.1001-683X.2013.04.005
    [2]
    国家铁路局. TB/T 3283-2015 铁路时间同步网技术条件[S]. 北京: 中国铁道出版社, 2015.

    National Railway Administration of the People's Republic of China. TB/T 3283-2015 Technical conditions for railway time synchronization network[S]. Beijing: China Railway Publishing House, 2015.
    [3]
    梁坤, 余沺, 杨志强, 等. 铁路时间同步网溯源及同步性能研究[J]. 中国铁路, 2023(8): 43–51. doi: 10.19549/j.issn.1001-683x.2023.04.26.003

    LIANG Kun, YU Tian, YANG Zhiqiang, et al. Research on traceability and synchronization performance of railway time synchronization network[J]. Chinese Railways, 2023(8): 43–51. doi: 10.19549/j.issn.1001-683x.2023.04.26.003
    [4]
    Joint Committee for Guides in Metrology (JCGM). JCGM 200: 2012 International vocabulary of metrology-Basic and general concepts and associated terms (VIM)[S]. 3rd ed. JCGM, 2012.
    [5]
    卫龙, 高红梅. 基于北斗系统的铁路地面时间同步系统设计[J]. 西部交通科技, 2016(2): 77–80. doi: 10.13282/j.cnki.wccst.2016.02.018

    WEI Long and GAO Hongmei. Design of railway ground time synchronization system based on Beidou navigation system[J]. Western China Communications Science & Technology, 2016(2): 77–80. doi: 10.13282/j.cnki.wccst.2016.02.018
    [6]
    程华, 吕博. 卫星共视技术在铁路同步网性能监测中的应用研究[J]. 电信工程技术与标准化, 2019, 32(9): 78–82. doi: 10.13992/j.cnki.tetas.2019.09.017

    CHENG Hua and LV Bo. Application research of satellite co-vision technology in railway synchronous network performance monitoring[J]. Telecom Engineering Technics and Standardization, 2019, 32(9): 78–82. doi: 10.13992/j.cnki.tetas.2019.09.017
    [7]
    王亚民. 北斗卫星导航系统在铁路同步网的应用[J]. 中国铁路, 2013(4): 8–11,29. doi: 10.3969/j.issn.1001-683X.2013.04.003

    WANG Yamin. Application of Beidou satellite navigation system in railway synchronization network[J].Chinese Railways, 2013(4): 8–11,29. doi: 10.3969/j.issn.1001-683X.2013.04.003
    [8]
    程华. 北斗卫星导航系统在铁路同步网中的应用研究[J]. 铁道通信信号, 2019, 55(7): 31–34. doi: 10.13879/j.issn1000-7458.2019-07.19086

    CHENG Hua. Application of BDS in railway synchronization networks[J]. Railway Signalling & Communication, 2019, 55(7): 31–34. doi: 10.13879/j.issn1000-7458.2019-07.19086
    [9]
    王胜军, 李德莉. OTN长距离传输时间同步的研究[J]. 光通信技术, 2017, 41(7): 13–16. doi: 10.13921/j.cnki.issn1002-5561.2017.07.004

    WANG Shengjun and LI Deli. Research on OTN long distance transmission time synchronization[J]. Optical Communication Technology, 2017, 41(7): 13–16. doi: 10.13921/j.cnki.issn1002-5561.2017.07.004
    [10]
    陈永, 詹芝贤, 刘雯. 下一代高速铁路LTE-R时间同步网协议脆弱性分析[J]. 铁道学报, 2023, 45(1): 63–74. doi: 10.3969/j.issn.1001-8360.2023.01.008

    CHEN Yong, ZHAN Zhixian, and LIU Wen. Vulnerability analysis of next-generation high-speed railway LTE-R time synchronization network protocol[J]. Journal of the China Railway Society, 2023, 45(1): 63–74. doi: 10.3969/j.issn.1001-8360.2023.01.008
    [11]
    程华, 张萌, 李芳, 等. 铁路5G-R承载技术与组网方案研究[J]. 中国铁路, 2023(5): 1–7. doi: 10.19549/j.issn.1001-683x.2023.03.10.001

    CHENG Hua, ZHANG Meng, LI Fang, et al. Research on railway 5G-R carrying technology and networking scheme[J]. Chinese Railways, 2023(5): 1–7. doi: 10.19549/j.issn.1001-683x.2023.03.10.001
    [12]
    中国铁道学会. 铁路下一代承载网应用技术白皮书[M]. 北京: 中国铁道学会, 2020.

    China Railway Society. White Paper: Application Technology of Next Generation Railway Carrying Network[M]. Beijing: China Railway Society, 2020.
    [13]
    于天泽, 张俊. 新型铁路同步网及其关键技术研究[J]. 铁道通信信号, 2019, 55(9): 43–45,49. doi: 10.13879/j.issn1000-7458.2019-09.19045

    YU Tianze and ZHANG Jun. Study on new type railway synchronization network[J]. Railway Signalling & Communication, 2019, 55(9): 43–45,49. doi: 10.13879/j.issn1000-7458.2019-09.19045
    [14]
    DIMARCQ N, GERTSVOLF M, MILETI G, et al. Roadmap towards the redefinition of the second[J]. arXiv: 2307.14141, 2023.
    [15]
    LEVINE J, TAVELLA P, and MILTON M. Towards a consensus on a continuous coordinated universal time[J]. Metrologia, 2023, 60(1): 014001. doi: 10.1088/1681-7575/ac9da5
    [16]
    MILTON J and PANFILO G. A new way to set the maximum weight in the weighting algorithm of UTC[C]. 2022 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), Paris, France, 2022: 1–2. doi: 10.1109/eftf/ifcs54560.2022.9850789.
    [17]
    PANFILO G and HARMEGNIES A. A new weighting procedure for UTC[C]. 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFCS), Prague, Czech Republic, 2013: 652–653. doi: 10.1109/EFTF-IFC.2013.6702122.
    [18]
    International Bureau of Weights and Measures (BIPM). Circular T[EB/OL].https://www.bipm.org/en/time-ftp/circular-t, 2023.
    [19]
    MA Yuexin, TANG Chengpan, HU Xiaogong, et al. Discussions of a2-drift variations of BeiDou-3 satellite rubidium atomic clocks[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1004713. doi: 10.1109/tim.2022.3187744
    [20]
    程华, 胡昌军. 基于1588v2高精度时间长距离传送实践[J]. 电信技术, 2018(3): 78–81. doi: 10.3969/j.issn.1000-1247.2018.03.020

    CHENG Hua and HU Changjun. Practice of long-distance transmission based on 1588v2 high-precision time[J]. Telecommunications Technology, 2018(3): 78–81. doi: 10.3969/j.issn.1000-1247.2018.03.020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (531) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return