Citation: | LIANG Kun, WEI Baoying. Research on Distributed Ensemble Time Scale for Railway Time Synchronization Network[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4127-4136. doi: 10.11999/JEIT230806 |
[1] |
于佳亮, 程华, 于天泽, 等. 基于北斗卫星同步授时的应用研究与试验[J]. 中国铁路, 2013(4): 18–21. doi: 10.3969/j.issn.1001-683X.2013.04.005
YU Jialiang, CHENG Hua, YU Tianze, et al. Application research and experiment of synchronous timing service based on Beidou satellite[J]. Chinese Railways, 2013(4): 18–21. doi: 10.3969/j.issn.1001-683X.2013.04.005
|
[2] |
国家铁路局. TB/T 3283-2015 铁路时间同步网技术条件[S]. 北京: 中国铁道出版社, 2015.
National Railway Administration of the People's Republic of China. TB/T 3283-2015 Technical conditions for railway time synchronization network[S]. Beijing: China Railway Publishing House, 2015.
|
[3] |
梁坤, 余沺, 杨志强, 等. 铁路时间同步网溯源及同步性能研究[J]. 中国铁路, 2023(8): 43–51. doi: 10.19549/j.issn.1001-683x.2023.04.26.003
LIANG Kun, YU Tian, YANG Zhiqiang, et al. Research on traceability and synchronization performance of railway time synchronization network[J]. Chinese Railways, 2023(8): 43–51. doi: 10.19549/j.issn.1001-683x.2023.04.26.003
|
[4] |
Joint Committee for Guides in Metrology (JCGM). JCGM 200: 2012 International vocabulary of metrology-Basic and general concepts and associated terms (VIM)[S]. 3rd ed. JCGM, 2012.
|
[5] |
卫龙, 高红梅. 基于北斗系统的铁路地面时间同步系统设计[J]. 西部交通科技, 2016(2): 77–80. doi: 10.13282/j.cnki.wccst.2016.02.018
WEI Long and GAO Hongmei. Design of railway ground time synchronization system based on Beidou navigation system[J]. Western China Communications Science & Technology, 2016(2): 77–80. doi: 10.13282/j.cnki.wccst.2016.02.018
|
[6] |
程华, 吕博. 卫星共视技术在铁路同步网性能监测中的应用研究[J]. 电信工程技术与标准化, 2019, 32(9): 78–82. doi: 10.13992/j.cnki.tetas.2019.09.017
CHENG Hua and LV Bo. Application research of satellite co-vision technology in railway synchronous network performance monitoring[J]. Telecom Engineering Technics and Standardization, 2019, 32(9): 78–82. doi: 10.13992/j.cnki.tetas.2019.09.017
|
[7] |
王亚民. 北斗卫星导航系统在铁路同步网的应用[J]. 中国铁路, 2013(4): 8–11,29. doi: 10.3969/j.issn.1001-683X.2013.04.003
WANG Yamin. Application of Beidou satellite navigation system in railway synchronization network[J].Chinese Railways, 2013(4): 8–11,29. doi: 10.3969/j.issn.1001-683X.2013.04.003
|
[8] |
程华. 北斗卫星导航系统在铁路同步网中的应用研究[J]. 铁道通信信号, 2019, 55(7): 31–34. doi: 10.13879/j.issn1000-7458.2019-07.19086
CHENG Hua. Application of BDS in railway synchronization networks[J]. Railway Signalling & Communication, 2019, 55(7): 31–34. doi: 10.13879/j.issn1000-7458.2019-07.19086
|
[9] |
王胜军, 李德莉. OTN长距离传输时间同步的研究[J]. 光通信技术, 2017, 41(7): 13–16. doi: 10.13921/j.cnki.issn1002-5561.2017.07.004
WANG Shengjun and LI Deli. Research on OTN long distance transmission time synchronization[J]. Optical Communication Technology, 2017, 41(7): 13–16. doi: 10.13921/j.cnki.issn1002-5561.2017.07.004
|
[10] |
陈永, 詹芝贤, 刘雯. 下一代高速铁路LTE-R时间同步网协议脆弱性分析[J]. 铁道学报, 2023, 45(1): 63–74. doi: 10.3969/j.issn.1001-8360.2023.01.008
CHEN Yong, ZHAN Zhixian, and LIU Wen. Vulnerability analysis of next-generation high-speed railway LTE-R time synchronization network protocol[J]. Journal of the China Railway Society, 2023, 45(1): 63–74. doi: 10.3969/j.issn.1001-8360.2023.01.008
|
[11] |
程华, 张萌, 李芳, 等. 铁路5G-R承载技术与组网方案研究[J]. 中国铁路, 2023(5): 1–7. doi: 10.19549/j.issn.1001-683x.2023.03.10.001
CHENG Hua, ZHANG Meng, LI Fang, et al. Research on railway 5G-R carrying technology and networking scheme[J]. Chinese Railways, 2023(5): 1–7. doi: 10.19549/j.issn.1001-683x.2023.03.10.001
|
[12] |
中国铁道学会. 铁路下一代承载网应用技术白皮书[M]. 北京: 中国铁道学会, 2020.
China Railway Society. White Paper: Application Technology of Next Generation Railway Carrying Network[M]. Beijing: China Railway Society, 2020.
|
[13] |
于天泽, 张俊. 新型铁路同步网及其关键技术研究[J]. 铁道通信信号, 2019, 55(9): 43–45,49. doi: 10.13879/j.issn1000-7458.2019-09.19045
YU Tianze and ZHANG Jun. Study on new type railway synchronization network[J]. Railway Signalling & Communication, 2019, 55(9): 43–45,49. doi: 10.13879/j.issn1000-7458.2019-09.19045
|
[14] |
DIMARCQ N, GERTSVOLF M, MILETI G, et al. Roadmap towards the redefinition of the second[J]. arXiv: 2307.14141, 2023.
|
[15] |
LEVINE J, TAVELLA P, and MILTON M. Towards a consensus on a continuous coordinated universal time[J]. Metrologia, 2023, 60(1): 014001. doi: 10.1088/1681-7575/ac9da5
|
[16] |
MILTON J and PANFILO G. A new way to set the maximum weight in the weighting algorithm of UTC[C]. 2022 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), Paris, France, 2022: 1–2. doi: 10.1109/eftf/ifcs54560.2022.9850789.
|
[17] |
PANFILO G and HARMEGNIES A. A new weighting procedure for UTC[C]. 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFCS), Prague, Czech Republic, 2013: 652–653. doi: 10.1109/EFTF-IFC.2013.6702122.
|
[18] |
International Bureau of Weights and Measures (BIPM). Circular T[EB/OL].https://www.bipm.org/en/time-ftp/circular-t, 2023.
|
[19] |
MA Yuexin, TANG Chengpan, HU Xiaogong, et al. Discussions of a2-drift variations of BeiDou-3 satellite rubidium atomic clocks[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1004713. doi: 10.1109/tim.2022.3187744
|
[20] |
程华, 胡昌军. 基于1588v2高精度时间长距离传送实践[J]. 电信技术, 2018(3): 78–81. doi: 10.3969/j.issn.1000-1247.2018.03.020
CHENG Hua and HU Changjun. Practice of long-distance transmission based on 1588v2 high-precision time[J]. Telecommunications Technology, 2018(3): 78–81. doi: 10.3969/j.issn.1000-1247.2018.03.020
|