Citation: | YANG Jing, HE Yao, LI Bin, LI Shaobo, HU Jianjun, PU Jiang. A Continual Semantic Segmentation Method Based on Gating Mechanism and Replay Strategy[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2908-2917. doi: 10.11999/JEIT230803 |
[1] |
GONG Xuan, XIA Xin, ZHU Wentao, et al. Deformable Gabor feature networks for biomedical image classification[C]. 2021 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2021: 4003–4011. doi: 10.1109/WACV48630.2021.00405.
|
[2] |
NING Xin, TIAN Weijuan, YU Zaiyang, et al. HCFNN: High-order coverage function neural network for image classification[J]. Pattern Recognition, 2022, 131: 108873. doi: 10.1016/j.patcog.2022.108873.
|
[3] |
HE Junjun, DENG Zhongying, ZHOU Lei, et al. Adaptive pyramid context network for semantic segmentation[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 7511–7520. doi: 10.1109/CVPR.2019.00770.
|
[4] |
YANG Jing, LI Shaobo, WANG Zheng, et al. Using deep learning to detect defects in manufacturing: A comprehensive survey and current challenges[J]. Materials, 2020, 13(24): 5755. doi: 10.3390/ma13245755.
|
[5] |
CHEN Pengfei, YU Xuehui, HAN Xumeng, et al. Point-to-box network for accurate object detection via single point supervision[C]. 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 51–67. doi: 10.1007/978-3-031-20077-9_4.
|
[6] |
SHENG Hualian, CAI Sijia, ZHAO Na, et al. Rethinking IoU-based optimization for single-stage 3D object detection[C]. 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 544–561. doi: 10.1007/978-3-031-20077-9_32.
|
[7] |
CHAUDHRY A, ROHRBACH M, ELHOSEINY M, et al. Continual learning with tiny episodic memories[EB/OL]. https://arxiv.org/abs/1902.10486v1, 2019.
|
[8] |
KIRKPATRICK J, PASCANU R, RABINOWITZ N, et al. Overcoming catastrophic forgetting in neural networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(13): 3521–3526. doi: 10.1073/pnas.1611835114.
|
[9] |
ZENKE F, POOLE B, and GANGULI S. Continual learning through synaptic intelligence[C]. The 34th International Conference on Machine Learning, Sydney, Australia, 2017: 3987–3995.
|
[10] |
ALJUNDI R, BABILONI F, ELHOSEINY M, et al. Memory aware synapses: Learning what (not) to forget[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 144–161. doi: 10.1007/978-3-030-01219-9_9.
|
[11] |
VAN DE VEN G M and TOLIAS A S. Three scenarios for continual learning[EB/OL]. https://arxiv.org/abs/1904.07734, 2019.
|
[12] |
WU Yue, CHEN Yinpeng, WANG Lijuan, et al. Large scale incremental learning[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 374–382. doi: 10.1109/CVPR.2019.00046.
|
[13] |
ZHAI Mengyao, CHEN Lei, and MORI G. Hyper-LifelongGAN: Scalable lifelong learning for image conditioned generation[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021: 2246–2255. doi: 10.1109/CVPR46437.2021.00228.
|
[14] |
GRAFFIETI G, MALTONI D, PELLEGRINI L, et al. Generative negative replay for continual learning[J]. Neural Networks, 2023, 162: 369–383. doi: 10.1016/j.neunet.2023.03.006.
|
[15] |
MARACANI A, MICHIELI U, TOLDO M, et al. RECALL: Replay-based continual learning in semantic segmentation[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 7006–7015. doi: 10.1109/ICCV48922.2021.00694.
|
[16] |
CERMELLI F, MANCINI M, BULÒ S R, et al. Modeling the background for incremental learning in semantic segmentation[C]. x2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 9230–9239. doi: 10.1109/CVPR42600.2020.00925.
|
[17] |
BALDI P and SADOWSKI P J. Understanding dropout[C]. The 26th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2013: 2814–2822.
|
[18] |
MIRZADEH S I, FARAJTABAR M, and GHASEMZADEH H. Dropout as an implicit gating mechanism for continual learning[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, USA, 2020: 945–951. doi: 10.1109/CVPRW50498.2020.00124.
|
[19] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
[20] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834–848. doi: 10.1109/TPAMI.2017.2699184.
|
[21] |
LI Zhizhong and HOIEM D. Learning without forgetting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(12): 2935–2947. doi: 10.1109/TPAMI.2017.2773081.
|
[22] |
REBUFFI S A, KOLESNIKOV A, SPERL G, et al. iCaRL: Incremental classifier and representation learning[C]. 2017 IEEE conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5533–5542. doi: 10.1109/CVPR.2017.587.
|
[23] |
MICHIELI U and ZANUTTIGH P. Incremental learning techniques for semantic segmentation[C]. 2019 IEEE/CVF International Conference on Computer Vision Workshop, Seoul, Korea (South), 2019: 3205–3212. doi: 10.1109/iccvw.2019.00400.
|
[24] |
KLINGNER M, BÄR A, DONN P, et al. Class-incremental learning for semantic segmentation re-using neither old data nor old labels[C]. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 2020: 1–8. doi: 10.1109/ITSC45102.2020.9294483.
|
[25] |
MICHIELI U and ZANUTTIGH P. Continual semantic segmentation via repulsion-attraction of sparse and disentangled latent representations[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 1114–1124. doi: 10.1109/CVPR46437.2021.00117.
|
[26] |
LI Junxi, SUN Xian, DIAO Wenhui, et al. Class-incremental learning network for small objects enhancing of semantic segmentation in aerial imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5612920. doi: 10.1109/TGRS.2021.3124303.
|
[27] |
DOUILLARD A, CHEN Yifu, DAPOGNY A, et al. PLOP: Learning without forgetting for continual semantic segmentation[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021: 4039–4049. doi: 10.1109/CVPR46437.2021.00403.
|
[28] |
ZHAO Danpei, YUAN Bo, and SHI Zhenwei. Inherit with distillation and evolve with contrast: Exploring class incremental semantic segmentation without exemplar memory[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(10): 11932–11947. doi: 10.1109/TPAMI.2023.3273574.
|