Advanced Search
Volume 46 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
SHAO Shuyu, DU Yao, FAN Xiaoli. Non-Autoregressive Sign Language Translation Technology Based on Transformer and Multimodal Alignment[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2932-2941. doi: 10.11999/JEIT230801
Citation: SHAO Shuyu, DU Yao, FAN Xiaoli. Non-Autoregressive Sign Language Translation Technology Based on Transformer and Multimodal Alignment[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2932-2941. doi: 10.11999/JEIT230801

Non-Autoregressive Sign Language Translation Technology Based on Transformer and Multimodal Alignment

doi: 10.11999/JEIT230801
Funds:  The National Natural Science Foundation of China (8210072143), R&D Program of Beijing Municipal Education Commission (KM202210037001)
  • Received Date: 2023-08-01
  • Rev Recd Date: 2023-12-27
  • Available Online: 2024-01-08
  • Publish Date: 2024-07-29
  • To address the challenge of aligning multimodal data and improving the slow translation speed in sign language translation, a Transformer Sign Language Translation Non-Autoregression (Trans-SLT-NA) is proposed in this paper, which utilizes a self-attention mechanism. Additionally, it incorporates a contrastive learning loss function to align the multimodal data. By capturing the contextual and interaction information between the input sequence (sign language videos) and the target sequence (text), the proposed model is able to perform sign language translation to natural language in s single step. The effectiveness of the proposed model is evaluated on publicly available datasets, including PHOENIX-2014-T (German), CSL (Chinese) and How2Sign (English). Results demonstrate that the proposed method achieves a significant improvement in translation speed, with a speed boost ranging from 11.6 to 17.6 times compared to autoregressive models, while maintaining comparable performance in terms of BiLingual Evaluation Understudy (BLEU-4) and Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metrics.
  • loading
  • [1]
    闫思伊, 薛万利, 袁甜甜. 手语识别与翻译综述[J]. 计算机科学与探索, 2022, 16(11): 2415–2429. doi: 10.3778/j.issn.1673-9418.2205003.

    YAN Siyi, XUE Wanli, and YUAN Tiantian. Survey of sign language recognition and translation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2415–2429. doi: 10.3778/j.issn.1673-9418.2205003.
    [2]
    陶唐飞, 刘天宇. 基于手语表达内容与表达特征的手语识别技术综述[J]. 电子与信息学报, 2023, 45(10): 3439–3457. doi: 10.11999/JEIT221051.

    TAO Tangfei and LIU Tianyu. A survey of sign language recognition technology based on sign language expression content and expression characteristics[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3439–3457. doi: 10.11999/JEIT221051.
    [3]
    DUARTE A, PALASKAR S, VENTURA L, et al. How2Sign: A large-scale multimodal dataset for continuous American sign language[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 2734–2743. doi: 10.1109/CVPR46437.2021.00276.
    [4]
    周乐员, 张剑华, 袁甜甜, 等. 多层注意力机制融合的序列到序列中国连续手语识别和翻译[J]. 计算机科学, 2022, 49(9): 155–161. doi: 10.11896/jsjkx.210800026.

    ZHOU Leyuan, ZHANG Jianhua, YUAN Tiantian, et al. Sequence-to-sequence Chinese continuous sign language recognition and translation with multilayer attention mechanism fusion[J]. Computer Science, 2022, 49(9): 155–161. doi: 10.11896/jsjkx.210800026.
    [5]
    CAMGÖZ N C, KOLLER O, HADFIELD S, et al. Sign language transformers: Joint end-to-end sign language recognition and translation[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 10020–10030. doi: 10.1109/CVPR42600.2020.01004.
    [6]
    HUANG Jie, ZHOU Wengang, ZHANG Qilin, et al. Video-based sign language recognition without temporal segmentation[C]. 32nd AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 2257–2264. doi: 10.1609/aaai.v32i1.11903.
    [7]
    ZHOU Hao, ZHOU Wengang, and LI Houqiang. Dynamic pseudo label decoding for continuous sign language recognition[C]. 2019 IEEE International Conference on Multimedia and Expo (ICME), Shanghai, China, 2019: 1282–1287. doi: 10.1109/ICME.2019.00223.
    [8]
    SONG Peipei, GUO Dan, XIN Haoran, et al. Parallel temporal encoder for sign language translation[C]. 2019 IEEE International Conference on Image Processing (ICIP), Taipei, China, 2019: 1915–1919. doi: 10.1109/ICIP.2019.8803123.
    [9]
    VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010.
    [10]
    路飞, 韩祥祖, 程显鹏, 等. 基于轻量3D CNNs和Transformer的手语识别[J]. 华中科技大学学报:自然科学版, 2023, 51(5): 13–18. doi: 10.13245/j.hust.230503.

    LU Fei, HAN Xiangzu, CHENG Xianpeng, et al. Sign language recognition based on lightweight 3D CNNs and transformer[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2023, 51(5): 13–18. doi: 10.13245/j.hust.230503.
    [11]
    WANG Hongyu, MA Shuming, DONG Li, et al. DeepNet: Scaling transformers to 1, 000 layers[EB/OL]. https://arxiv.org/abs/2203.00555, 2022.
    [12]
    KISHORE P V V, KUMAR D A, SASTRY A S C S, et al. Motionlets matching with adaptive kernels for 3-D Indian sign language recognition[J]. IEEE Sensors Journal, 2018, 18(8): 3327–3337. doi: 10.1109/JSEN.2018.2810449.
    [13]
    XIAO Yisheng, WU Lijun, GUO Junliang, et al. A survey on non-autoregressive generation for neural machine translation and beyond[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(10): 11407–11427. doi: 10.1109/TPAMI.2023.3277122.
    [14]
    LI Feng, CHEN Jingxian, and ZHANG Xuejun. A survey of non-autoregressive neural machine translation[J]. Electronics, 2023, 12(13): 2980. doi: 3390/electronics12132980.
    [15]
    CAMGOZ N C, HADFIELD S, KOLLER O, et al. Neural sign language translation[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7784–7793. doi: 10.1109/CVPR.2018.00812.
    [16]
    ARVANITIS N, CONSTANTINOPOULOS C, and KOSMOPOULOS D. Translation of sign language glosses to text using sequence-to-sequence attention models[C]. 2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Sorrento, Italy, 2019: 296–302. doi: 10.1109/SITIS.2019.00056.
    [17]
    XIE Pan, ZHAO Mengyi, and HU Xiaohui. PiSLTRc: Position-informed sign language transformer with content-aware convolution[J]. IEEE Transactions on Multimedia, 2022, 24: 3908–3919. doi: 10.1109/TMM.2021.3109665.
    [18]
    CHEN Yutong, WEI Fangyun, SUN Xiao, et al. A simple multi-modality transfer learning baseline for sign language translation[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA, 2022: 5110–5120. doi: 10.1109/CVPR52688.2022.00506.
    [19]
    ZHOU Hao, ZHOU Wengang, QI Weizhen, et al. Improving sign language translation with monolingual data by sign back-translation[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021: 1316–1325. doi: 10.1109/CVPR46437.2021.00137.
    [20]
    ZHENG Jiangbin, WANG Yile, TAN Cheng, et al. CVT-SLR: Contrastive visual-textual transformation for sign language recognition with variational alignmen[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 23141–23150. doi: 10.1109/CVPR52729.2023.02216.
    [21]
    GU Jiatao, BRADBURY J, XIONG Caiming, et al. Non-autoregressive neural machine translation[C]. 6th International Conference on Learning Representations, Vancouver, Canada, 2018. doi: 10.48550/arXiv.1711.02281.
    [22]
    WANG Yiren, TIAN Fei, HE Di, et al. Non-autoregressive machine translation with auxiliary regularization[C]. The 33rd AAAI Conference on Artificial Intelligence, Honolulu, USA, 2019: 5377–5384. doi: 10.1609/aaai.v33i01.33015377.
    [23]
    XIE Pan, LI Zexian, ZHAO Zheng, et al. MvSR-NAT: Multi-view subset regularization for non-autoregressive machine translation[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2022: 1–10. doi: 10.1109/TASLP.2022.3221043.
    [24]
    ZHOU HAO, ZHOU Wengang, ZHOU Yun, et al. Spatial-temporal multi-cue network for sign language recognition and translation[J]. IEEE Transactions on Multimedia, 2022, 24: 768–779. doi: 10.1109/TMM.2021.3059098.
    [25]
    TARRÉS L, GÁLLEGO G I, DUARTE A, et al. Sign language translation from instructional videos[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Vancouver, Canada, 2023: 5625–5635. doi: 10.1109/CVPRW59228.2023.00596.
    [26]
    CAMGOZ N C, KOLLER O, HADFIELD S, et al. Multi-channel transformers for multi-articulatory sign language translation[C]. ECCV 2020 Workshops on Computer Vision, Glasgow, UK, 2020: 301–319. doi: 10.1007/978-3-030-66823-5_18.
    [27]
    FU Biao, YE Peigen, ZHANG Liang, et al. A token-level contrastive framework for sign language translation[C]. 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023: 1–5. doi: 10.1109/ICASSP49357.2023.10095466.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(7)

    Article Metrics

    Article views (466) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return