Advanced Search
Volume 45 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
CHEN Ledong, WU Jianfei, WANG Xuesong, ZHENG Yifei, HAN Changlin. Design of a Magnetic IC-stripline Cell Based on an Improved PSO Algorithm[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3830-3838. doi: 10.11999/JEIT230787
Citation: CHEN Ledong, WU Jianfei, WANG Xuesong, ZHENG Yifei, HAN Changlin. Design of a Magnetic IC-stripline Cell Based on an Improved PSO Algorithm[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3830-3838. doi: 10.11999/JEIT230787

Design of a Magnetic IC-stripline Cell Based on an Improved PSO Algorithm

doi: 10.11999/JEIT230787
Funds:  China Aerospace Science and Technology Group Co., Ltd. Eighth Research Institute Industry University Research Cooperation Fund Project (SAST2021-069), Hunan Province Graduate Research Innovation Project (CX20230041)
  • Received Date: 2023-07-28
  • Rev Recd Date: 2023-09-05
  • Available Online: 2023-09-08
  • Publish Date: 2023-11-28
  • As an increasing number of high-frequency circuits are integrated into chips, high-frequency Integrated Circuit ElectroMagnetic Compatibility (IC-EMC) problem of chips is becoming increasingly prominent. The IC-Stripline cell is an important device for measuring radiated emission and immunity of integrated chips. However, bandwidth is the major factor limiting its application. According to IEC standard, the paper applies magnetic absorbing materials to the IC-Stripline cell to expand the working bandwidth of the cell, and proposes a method combining Particle Swarm Optimization (PSO) and Dichotomy to calculate the available electromagnetic parameter range of the magnetic absorbing material. Experimental results indicate that the material can improve the operational bandwidth of the IC-Stripline cell from 0~6 GHz to a maximum of 0~10 GHz. The electromagnetic parameters of the selected magnetic absorbing material are consistent with the calculations over the range of 0~9 GHz, while the parameters exceed the calculation results for frequencies >9 GHz. The S parameter measurements of the IC-Stripline cell using this material reveal that the material indeed improves the operational bandwidth from 0~6 GHz to 0~9 GHz, which is consistent with the calculations results and validates the effectiveness of the electromagnetic parameter range determination method. Compared to traditional methods, the efficiency of this method is increased by 73.3%. Furthermore, the proposed method is applicable to parameter range calculation problems under similar objective constraints.
  • loading
  • [1]
    IEC. IEC 61967-2: 2005 Integrated circuits-Measurement of electromagnetic emissions, 150 kHz to 1 GHz-Part 2: Measurement of radiated emissions-TEM cell and wideband TEM cell method[S]. London: IEC, 2005.
    [2]
    IEC. IEC 62132-2: 2010 Integrated circuits-Measurement of electromagnetic immunity -Part 2: Measurement of radiated immunity-TEM cell and wideband TEM cell method[S]. London: IEC, 2010.
    [3]
    IEC. IEC 61967-8: 2023 RLV Redline Version Integrated circuits - Measurement of electromagnetic emissions-Part 8: Measurement of radiated emissions-IC stripline method[S]. London: IEC, 2023.
    [4]
    IEC. IEC 62132-8: 2012 Integrated circuits-Measurement of electromagnetic immunity-Part 8: Measurement of radiated immunity-IC stripline method[S]. London: IEC, 2012.
    [5]
    KÖRBER B and TREBECK M. IC-streifenleitung-neues messverfahren zur bewertung der EMV-eigenschaften von halbleitern[C]. Internationale Fachmesse und Kongress fur Elektromagnetische Vertraglichkeit. Düsseldorf, Germany, 2008.
    [6]
    CHEN Ledong, WU Jianfei, ZHANG Hongli, et al. An optimized test method based on IC-Stripline TEM cell[C]. 2021 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Nusa Dua-Bali, Indonesia, 2021: 1–4.
    [7]
    CHEN Ledong, WU Jianfei, ZHENG Yifei, et al. A novel IC-Stripline cell design based on image theory[J]. Electronics, 2022, 11(17): 2640. doi: 10.3390/electronics11172640
    [8]
    袁钟柱, 万发雨. 宽带横电磁波小室设计与测试应用[J]. 南京信息工程大学学报:自然科学版, 2021, 13(4): 437–443. doi: 10.13878/j.cnki.jnuist.2021.04.008

    YUAN Zhongzhu and WAN Fayu. Design and test application of broadband TEM cell[J]. Journal of Nanjing University of Information Science &Technology:Natural Science Edition, 2021, 13(4): 437–443. doi: 10.13878/j.cnki.jnuist.2021.04.008
    [9]
    DENG Shaowei, POMMERENKE D, HUBING T, et al. An experimental investigation of higher order mode suppression in TEM cells[J]. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(2): 416–419. doi: 10.1109/TEMC.2008.919028
    [10]
    陈乐东, 吴建飞, 王芳, 等. 基于横向扼流法的宽带带状线小室设计[J]. 电波科学学报, 2023, 38(1): 181–186. doi: 10.12265/j.cjors.2022007

    CHEN Ledong, WU Jianfei, WANG Fang, et al. Design of broadband IC-Stripline cell based on transverse choke method[J]. Chinese Journal of Radio Science, 2023, 38(1): 181–186. doi: 10.12265/j.cjors.2022007
    [11]
    宋春江, 冯骁尧, 戴飞. 基于波导缝隙天线的TEM室频率扩展方法[J]. 北京航空航天大学学报, 2018, 44(4): 785–791. doi: 10.13700/j.bh.1001-5965.2017.0296

    SONG Chunjiang, FENG Xiaoyao, and DAI Fei. Frequency extension method of TEM cells based on slotted waveguide antenna[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 785–791. doi: 10.13700/j.bh.1001-5965.2017.0296
    [12]
    GROH C, GARBE H, and KOCH M. Higher order mode behavior in loaded and unloaded TEM cells[C]. 1999 IEEE International Symposium on Electromagnetic Compatability. Symposium Record (Cat. No. 99CH36261). Seattle, USA, 1999: 225–230.
    [13]
    CRAWFORD M L, WORKMAN J L, and THOMAS C L. Generation of EM susceptibility test fields using a large absorber-loaded TEM cell[J]. IEEE Transactions on Instrumentation and Measurement, 1977, 26(3): 225–230. doi: 10.1109/TIM.1977.4314541
    [14]
    KRAUSE J and MONICH G. FRCTEM cell. Approaches to improve VSWR and to suppress longitudinal components in conical TEM cells[C]. IEEE 1997, EMC, Austin Style. IEEE 1997 International Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No. 97CH36113), Austin, USA, 1997: 54–59.
    [15]
    SITTAKUL V, HONGTHONG S, and PASAKAWEE S. Design and analysis of GTEM cell using the ferrite-tile and pylamid absorbers for EMC test in National Institute of Metrology (Thailand)[C]. 2015 IEEE Conference on Antenna Measurements & Applications (CAMA), Chiang Mai, Thailand, 2015: 1–4.
    [16]
    PASAKAWEE S and SITTAKUL V. Implementation and characterization of GTEM cell using ferrite tile absorber[C]. 2017 IEEE Conference on Antenna Measurements & Applications (CAMA), Tsukuba, Japan, 2017: 65–68.
    [17]
    CHEN L D, WU J F, ZHENG Y F, et al. Methods to expand the bandwidth of the IC-Stripline cell[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 6006608. doi: 10.1109/TIM.2022.3208656
    [18]
    张欢, 雷宏. 线性逆问题中惩罚优化方法信号重建误差界研究[J]. 电子与信息学报, 2019, 41(12): 2939–2944. doi: 10.11999/JEIT181125

    ZHANG Huan and LEI Hong. An error bound of signal recovery for penalized programs in linear inverse problems[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2939–2944. doi: 10.11999/JEIT181125
    [19]
    赵斌, 王刚, 宋婧妍, 等. 基于粒子群算法的LCLC谐振变换器优化设计[J]. 电子与信息学报, 2021, 43(6): 1622–1629. doi: 10.11999/JEIT190337

    ZHAO Bin, WANG Gang, SONG Jingyan, et al. Optimal design method of the LCLC resonant converter based on particle-swarm-optimization algorithm[J]. Journal of Electronics &Information Technology, 2021, 43(6): 1622–1629. doi: 10.11999/JEIT190337
    [20]
    刘顺华, 刘军民, 董星龙, 等. 电磁波屏蔽及吸波材料[M]. 北京: 化学工业出版社, 2007: 185–186.

    LIU Shunhua, LIU Junmin, DONG Xinglong, et al. Electromagnetic Wave Shielding and Absorbing Materials[M]. Beijing: Chemical Industry Press, 2007: 185–186.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (428) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return