Citation: | WANG Xiang, SONG Chuanjiang, YANG Zhanpeng. Classification Method for Chirp Spread Spectrum Communication Formats Based on Multi-Feature Fusion[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4003-4015. doi: 10.11999/JEIT230783 |
[1] |
O’SHEA T J, CORGAN J, and CLANCY T C. Convolutional radio modulation recognition networks[C]. 17th International Conference on Engineering Applications of Neural Networks, Aberdeen, UK, 2016.
|
[2] |
O’SHEA T J and WEST N. Radio machine learning dataset generation with GNU radio[C]. Proceedings of the 6th GNU Radio Conference, Boulder, USA, 2016.
|
[3] |
MENG Fan, CHEN Peng, WU Lenan, et al. Automatic modulation classification: A deep learning enabled approach[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10760–10772. doi: 10.1109/TVT.2018.2868698
|
[4] |
HUANG Sai, JIANG Yizhou, GAO Yue, et al. Automatic modulation classification using contrastive fully convolutional network[J]. IEEE Wireless Communications Letters, 2019, 8(4): 1044–1047. doi: 10.1109/LWC.2019.2904956
|
[5] |
HUYNH-THE T, HUA C H, PHAM Q V, et al. MCNet: An efficient CNN architecture for robust automatic modulation classification[J]. IEEE Communications Letters, 2020, 24(4): 811–815. doi: 10.1109/LCOMM.2020.2968030
|
[6] |
TU Ya, LIN Yun, HOU Changbo, et al. Complex-valued networks for automatic modulation classification[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 10085–10089. doi: 10.1109/TVT.2020.3005707
|
[7] |
CHEN Yufan, SHAO Wei, LIU Jin, et al. Automatic modulation classification scheme based on LSTM with random erasing and attention mechanism[J]. IEEE Access, 2020, 8: 154290–154300. doi: 10.1109/ACCESS.2020.3017641
|
[8] |
LIANG Zhi, TAO Mingliang, WANG Ling, et al. Automatic modulation recognition based on adaptive attention mechanism and ResNeXt WSL model[J]. IEEE Communications Letters, 2021, 25(9): 2953–2957. doi: 10.1109/LCOMM.2021.3093485
|
[9] |
DONG Yihong, JIANG Xiaohan, CHENG Lei, et al. SSRCNN: A semi-supervised learning framework for signal recognition[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(3): 780–789. doi: 10.1109/TCCN.2021.3067916
|
[10] |
CHANG Shuo, HUANG Sai, ZHANG Ruiyun, et al. Multitask-learning-based deep neural network for automatic modulation classification[J]. IEEE Internet of Things Journal, 2022, 9(3): 2192–2206. doi: 10.1109/JIOT.2021.3091523
|
[11] |
WINKLEY M R. Chirp signals for communications[C]. Proceedings of IEEE WESCON Conference, Florida, USA, 1962: 14–17.
|
[12] |
冯金振, 郑国莘. Chirp-BOK-BPSK调制超宽带无线传输技术[J]. 应用科学学报, 2008, 26(2): 123–126. doi: 10.3969/j.issn.0255-8297.2008.02.003
FENG Jinzhen and ZHENG Guoxin. Ultra-wideband wireless communication based on chirp-BOK-BPSK modulation[J]. Journal of Applied Sciences, 2008, 26(2): 123–126. doi: 10.3969/j.issn.0255-8297.2008.02.003
|
[13] |
ZHAO Qiming, ZHANG Qinyu, and ZHANG Naitong. Multiple chirp-rate modulation based on fractional fourier transform[C]. 2010 First International Conference on Pervasive Computing, Signal Processing and Applications, Harbin, China, 2010: 688–691.
|
[14] |
张楷涵, 王文俊, 伊锦旺, 等. 基于FRFT的Chirp-FSK水声扩频通信方法研究[J]. 声学技术, 2017, 36(6): 115–120.
ZHANG Kaihan, WANG Wenjun, YI Jinwang, et al. Chirp FSK based on FRFT for underwater acoustic communication[J]. Technical Acoustics, 2017, 36(6): 115–120.
|
[15] |
VANGELISTA L. Frequency shift chirp modulation: The LoRa modulation[J]. IEEE Signal Processing Letters, 2017, 24(12): 1818–1821. doi: 10.1109/LSP.2017.2762960
|
[16] |
HANIF M and NGUYEN H H. Slope-shift keying LoRa-based modulation[J]. IEEE Internet of Things Journal, 2021, 8(1): 211–221. doi: 10.1109/JIOT.2020.3004318
|
[17] |
AN Shixiang, WANG Hua, SUN Yiwei, et al. Time domain multiplexed LoRa modulation waveform design for IoT communication[J]. IEEE Communications Letters, 2022, 26(4): 838–842. doi: 10.1109/LCOMM.2022.3146511
|
[18] |
DE ALMEIDA I B F, CHAFII M, NIMR A, et al. In-phase and quadrature chirp spread spectrum for IoT communications[C]. GLOBECOM 2020 - 2020 IEEE Global Communications Conference, Taipei, China, 2020.
|
[19] |
江宇阳. 基于LFM的雷达通信共享信号性能研究[D]. [硕士论文], 华中科技大学, 2019.
JIANG Yuyang. Performance study of LFM-based shared signal for radar and communications[D]. [Master dissertation], Huazhong University of Science and Technology, 2019.
|
[20] |
黄建训. 雷达通信信号一体化及其波束形成研究[D]. [硕士论文], 哈尔滨工程大学, 2020.
HUANG Jianxun. Research on radar communication signal integration and beamforming[D]. [Master dissertation], Harbin Engineering University, 2020.
|
[21] |
杨卜镔. MSK-LFM雷达通信一体化中多普勒频移估计研究[D]. [硕士论文], 西安电子科技大学, 2021.
YANG Bubin. Research on Doppler shift estimation in MSK-LFM radar communication integration[D]. [Master dissertation], Xidian University, 2021.
|
[22] |
HAN Lubing, GAO Feifei, LI Zan, et al. Low complexity automatic modulation classification based on order-statistics[J]. IEEE Transactions on Wireless Communications, 2017, 16(1): 400–411. doi: 10.1109/TWC.2016.2623716
|
[23] |
HAZAR M A, ODABASIOGLU N, ENSARI T, et al. Performance analysis and improvement of machine learning algorithms for automatic modulation recognition over Rayleigh fading channels[J]. Neural Computing and Applications, 2018, 29(9): 351–360. doi: 10.1007/s00521-017-3040-6
|
[24] |
SATIJA U, MANIKANDAN M S, and RAMKUMAR B. Performance study of cyclostationary based digital modulation classification schemes[C]. 2014 9th International Conference on Industrial and Information Systems (ICIIS), Gwalior, India, 2014: 1–5.
|
[25] |
WANG Chao, WANG Jian, and ZHANG Xudong. Automatic radar waveform recognition based on time-frequency analysis and convolutional neural network[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, USA, 2017: 2437–2441.
|
[26] |
ZHANG Hanjian, YU Lei, and XIA Guisong. Iterative time-frequency filtering of sinusoidal signals with updated frequency estimation[J]. IEEE Signal Processing Letters, 2016, 23(1): 139–143. doi: 10.1109/LSP.2015.2504565
|
[27] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. 15th European Conference on Computer Vision, Munich, Germany, 2018.
|
[28] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778.
|
[29] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015.
|
[30] |
KULIN M, KAZAZ T, MOERMAN I, et al. End-to-end learning from spectrum data: A deep learning approach for wireless signal identification in spectrum monitoring applications[J]. IEEE Access, 2018, 6: 18484–18501. doi: 10.1109/ACCESS.2018.2818794
|