Advanced Search
Volume 46 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
TAN Guoping, Yi Wenxiong, ZHOU Siyuan, HU Hexuan. Proximal Policy Optimization Algorithm for UAV-assisted MEC Vehicle Task Offloading and Power Control[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2361-2371. doi: 10.11999/JEIT230770
Citation: TAN Guoping, Yi Wenxiong, ZHOU Siyuan, HU Hexuan. Proximal Policy Optimization Algorithm for UAV-assisted MEC Vehicle Task Offloading and Power Control[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2361-2371. doi: 10.11999/JEIT230770

Proximal Policy Optimization Algorithm for UAV-assisted MEC Vehicle Task Offloading and Power Control

doi: 10.11999/JEIT230770
Funds:  The National Natural Science Foundation of China (61832005, U21B2016)
  • Received Date: 2023-07-28
  • Rev Recd Date: 2024-01-05
  • Available Online: 2024-01-28
  • Publish Date: 2024-06-30
  • The architecture of Mobile Edge Computing (MEC), assisted by Unmanned Aerial Vehicles (UAVs), is an efficient model for flexible management of mobile computing-intensive and delay-sensitive tasks. Nevertheless, achieving an optimal balance between task latency and energy consumption during task processing has been a challenging issue in vehicular communication applications. To tackle this problem, this paper introduces a model for optimizing task offloading and power control in vehicle networks based on UAV-assisted mobile edge computing architecture, using a Non-Orthogonal Multiple Access (NOMA) approach. The proposed model takes into account dynamic factors like vehicle high mobility and wireless channel time-variations. The problem is modeled as a Markov decision process. A distributed deep reinforcement learning algorithm based on Proximal Policy Optimization (PPO) is proposed, enabling each vehicle to make autonomous decisions on task offloading and related transmission power based on its own perceptual local information. This achieves the optimal balance between task latency and energy consumption. Simulation results reveal that the proposed proximal policy optimization algorithm for task offloading and power control scheme not only improves the performance of task latency and energy consumption compared to existing methods, The average system cost performance improvement is at least 13% or more. but also offers a performance-balanced optimization method. This method achieves optimal balance between the system task latency and energy consumption level by adjusting user preference weight factors.
  • loading
  • [1]
    ALAM M Z and JAMALIPOUR A. Multi-agent DRL-based Hungarian algorithm (MADRLHA) for task offloading in multi-access edge computing internet of vehicles (IoVS)[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7641–7652. doi: 10.1109/TWC.2022.3160099.
    [2]
    DU Shougang, CHEN Xin, JIAO Libo, et al. Energy efficient task offloading for UAV-assisted mobile edge computing[C]. Proceedings of 2021 China Automation Congress (CAC), Kunming, China, 2021: 6567–6571. doi: 10.1109/CAC53003.2021.9728502.
    [3]
    LIU Haoqiang, ZHAO Hongbo, GENG Liwei, et al. A distributed dependency-aware offloading scheme for vehicular edge computing based on policy gradient[C]. Proceedings of the 8th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2021 7th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), Washington, USA, 2021: 176–181. doi: 10.1109/CSCloud-EdgeCom52276.2021.00040.
    [4]
    李斌, 刘文帅, 费泽松. 面向空天地异构网络的边缘计算部分任务卸载策略[J]. 电子与信息学报, 2022, 44(9): 3091–3098. doi: 10.11999/JEIT220272.

    LI bin, LIU Wenshuai, and FEI Zesong. Partial computation offloading for mobile edge computing in space-air-ground integrated network[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3091–3098. doi: 10.11999/JEIT220272.
    [5]
    CUI Yaping, DU Lijuan, WANG Honggang, et al. Reinforcement learning for joint optimization of communication and computation in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(12): 13062–13072. doi: 10.1109/TVT.2021.3125109.
    [6]
    NIE Yiwen, ZHAO Junhui, GAO Feifei, et al. Semi-distributed resource management in UAV-aided MEC systems: A multi-agent federated reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2021, 70(12): 13162–13173. doi: 10.1109/TVT.2021.3118446.
    [7]
    LIU Zongkai, DAI Penglin, XING Huanlai, et al. A distributed algorithm for task offloading in vehicular networks with hybrid fog/cloud computing[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(7): 4388–4401. doi: 10.1109/TSMC.2021.3097005.
    [8]
    HAN Xu, TIAN Daxin, SHENG Zhengguo, et al. Reliability-aware joint optimization for cooperative vehicular communication and computing[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(8): 5437–5446. doi: 10.1109/TITS.2020.3038558.
    [9]
    DONG Peiran, NING Zhaolong, MA Rong, et al. NOMA-based energy-efficient task scheduling in vehicular edge computing networks: A self-imitation learning-based approach[J]. China Communications, 2020, 17(11): 1–11. doi: 10.23919/JCC.2020.11.001.
    [10]
    ZHANG Fenghui, WANG M M, BAO Xuecai, et al. Centralized resource allocation and distributed power control for NOMA-integrated NR V2X[J]. IEEE Internet of Things Journal, 2021, 8(22): 16522–16534. doi: 10.1109/JIOT.2021.3075250.
    [11]
    李斌, 刘文帅, 谢万城, 等. 智能反射面赋能无人机边缘网络计算卸载方案[J]. 通信学报, 2022, 43(10): 223–233. doi: 10.11959/j.issn.1000-436x.2022196.

    LI Bin, LIU Wenshuai, XIE Wancheng, et al. Computation offloading scheme for RIS-empowered UAV edge network[J]. Journal on Communications, 2022, 43(10): 223–233. doi: 10.11959/j.issn.1000-436x.2022196.
    [12]
    BUDHIRAJA I, KUMAR N, TYAGI S, et al. Energy consumption minimization scheme for NOMA-based mobile edge computation networks underlaying UAV[J]. IEEE Systems Journal, 2021, 15(4): 5724–5733. doi: 10.1109/JSYST.2021.3076782.
    [13]
    WANG Ningyuan, LI Feng, CHEN Dong, et al. NOMA-based energy-efficiency optimization for UAV enabled space-air-ground integrated relay networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 4129–4141. doi: 10.1109/TVT.2022.3151369.
    [14]
    KATWE M, SINGH K, SHARMA P K, et al. Dynamic user clustering and optimal power allocation in UAV-assisted full-duplex hybrid NOMA system[J]. IEEE Transactions on Wireless Communications, 2022, 21(4): 2573–2590. doi: 10.1109/TWC.2021.3113640.
    [15]
    GAN Xueqing, JIANG Yuke, WANG Yufan, et al. Sum rate maximization for UAV assisted NOMA backscatter communication system[C]. Proceedings of the 6th World Conference on Computing and Communication Technologies (WCCCT), Chengdu, China, 2023: 19–23. doi: 10.1109/WCCCT56755.2023.10052259.
    [16]
    ASHRAF M I, LIU Chenfeng, BENNIS M, et al. Dynamic resource allocation for optimized latency and reliability in vehicular networks[J]. IEEE Access, 2018, 6: 63843–63858. doi: 10.1109/ACCESS.2018.2876548.
    [17]
    KHOUEIRY B W and SOLEYMANI M R. An efficient NOMA V2X communication scheme in the Internet of vehicles[C]. Proceedings of the IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 2017: 1–7. doi: 10.1109/VTCSpring.2017.8108427.
    [18]
    CHEN Yingyang, WANG Li, AI Yutong, et al. Performance analysis of NOMA-SM in vehicle-to-vehicle massive MIMO channels[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(12): 2653–2666. doi: 10.1109/JSAC.2017.2726006.
    [19]
    ZHANG Di, LIU Yuanwei, DAI Linglong, et al. Performance analysis of FD-NOMA-based decentralized V2X systems[J]. IEEE Transactions on Communications, 2019, 67(7): 5024–5036. doi: 10.1109/TCOMM.2019.2904499.
    [20]
    TANG S J W, NG K Y, KHOO B H, et al. Real-time lane detection and rear-end collision warning system on a mobile computing platform[C]. Proceedings of the IEEE 39th Annual Computer Software and Applications Conference, Taichung, China, 2015: 563–568. doi: 10.1109/COMPSAC.2015.171.
    [21]
    ZHAN Wenhan, LUO Chunbo, WANG Jin, et al. Deep-reinforcement-learning-based offloading scheduling for vehicular edge computing[J]. IEEE Internet of Things Journal, 2020, 7(6): 5449–5465. doi: 10.1109/JIOT.2020.2978830.
    [22]
    ZHONG Ruikang, LIU Xiao, LIU Yuanwei, et al. Multi-agent reinforcement learning in NOMA-aided UAV networks for cellular offloading[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 1498–1512. doi: 10.1109/TWC.2021.3104633.
    [23]
    NGO H Q, LARSSON E G, and MARZETTA T L. Energy and spectral efficiency of very large multiuser MIMO systems[J]. IEEE Transactions on Communications, 2013, 61(4): 1436–1449. doi: 10.1109/TCOMM.2013.020413.110848.
    [24]
    ZHU Hongbiao, WU Qiong, WU Xiaojun, et al. Decentralized power allocation for MIMO-NOMA vehicular edge computing based on deep reinforcement learning[J]. IEEE Internet of Things Journal, 2022, 9(14): 12770–12782. doi: 10.1109/JIOT.2021.3138434.
    [25]
    LIU Yuan, XIONG Ke, NI Qiang, et al. UAV-assisted wireless powered cooperative mobile edge computing: Joint offloading, CPU control, and trajectory optimization[J]. IEEE Internet of Things Journal, 2020, 7(4): 2777–2790. doi: 10.1109/JIOT.2019.2958975.
    [26]
    TSE D and VISWANATH P. Fundamentals of Wireless Communication[M]. Cambridge: Cambridge University Press, 2005.
    [27]
    SCHULMAN J, MORITZ P, LEVINE S, et al. High-dimensional continuous control using generalized advantage estimation[J]. arXiv: 1506.02438, 2015. doi: 10.48550/arXiv.1506.02438.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (487) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return