Citation: | TAN Guoping, Yi Wenxiong, ZHOU Siyuan, HU Hexuan. Proximal Policy Optimization Algorithm for UAV-assisted MEC Vehicle Task Offloading and Power Control[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2361-2371. doi: 10.11999/JEIT230770 |
[1] |
ALAM M Z and JAMALIPOUR A. Multi-agent DRL-based Hungarian algorithm (MADRLHA) for task offloading in multi-access edge computing internet of vehicles (IoVS)[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7641–7652. doi: 10.1109/TWC.2022.3160099.
|
[2] |
DU Shougang, CHEN Xin, JIAO Libo, et al. Energy efficient task offloading for UAV-assisted mobile edge computing[C]. Proceedings of 2021 China Automation Congress (CAC), Kunming, China, 2021: 6567–6571. doi: 10.1109/CAC53003.2021.9728502.
|
[3] |
LIU Haoqiang, ZHAO Hongbo, GENG Liwei, et al. A distributed dependency-aware offloading scheme for vehicular edge computing based on policy gradient[C]. Proceedings of the 8th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2021 7th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), Washington, USA, 2021: 176–181. doi: 10.1109/CSCloud-EdgeCom52276.2021.00040.
|
[4] |
李斌, 刘文帅, 费泽松. 面向空天地异构网络的边缘计算部分任务卸载策略[J]. 电子与信息学报, 2022, 44(9): 3091–3098. doi: 10.11999/JEIT220272.
LI bin, LIU Wenshuai, and FEI Zesong. Partial computation offloading for mobile edge computing in space-air-ground integrated network[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3091–3098. doi: 10.11999/JEIT220272.
|
[5] |
CUI Yaping, DU Lijuan, WANG Honggang, et al. Reinforcement learning for joint optimization of communication and computation in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(12): 13062–13072. doi: 10.1109/TVT.2021.3125109.
|
[6] |
NIE Yiwen, ZHAO Junhui, GAO Feifei, et al. Semi-distributed resource management in UAV-aided MEC systems: A multi-agent federated reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2021, 70(12): 13162–13173. doi: 10.1109/TVT.2021.3118446.
|
[7] |
LIU Zongkai, DAI Penglin, XING Huanlai, et al. A distributed algorithm for task offloading in vehicular networks with hybrid fog/cloud computing[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(7): 4388–4401. doi: 10.1109/TSMC.2021.3097005.
|
[8] |
HAN Xu, TIAN Daxin, SHENG Zhengguo, et al. Reliability-aware joint optimization for cooperative vehicular communication and computing[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(8): 5437–5446. doi: 10.1109/TITS.2020.3038558.
|
[9] |
DONG Peiran, NING Zhaolong, MA Rong, et al. NOMA-based energy-efficient task scheduling in vehicular edge computing networks: A self-imitation learning-based approach[J]. China Communications, 2020, 17(11): 1–11. doi: 10.23919/JCC.2020.11.001.
|
[10] |
ZHANG Fenghui, WANG M M, BAO Xuecai, et al. Centralized resource allocation and distributed power control for NOMA-integrated NR V2X[J]. IEEE Internet of Things Journal, 2021, 8(22): 16522–16534. doi: 10.1109/JIOT.2021.3075250.
|
[11] |
李斌, 刘文帅, 谢万城, 等. 智能反射面赋能无人机边缘网络计算卸载方案[J]. 通信学报, 2022, 43(10): 223–233. doi: 10.11959/j.issn.1000-436x.2022196.
LI Bin, LIU Wenshuai, XIE Wancheng, et al. Computation offloading scheme for RIS-empowered UAV edge network[J]. Journal on Communications, 2022, 43(10): 223–233. doi: 10.11959/j.issn.1000-436x.2022196.
|
[12] |
BUDHIRAJA I, KUMAR N, TYAGI S, et al. Energy consumption minimization scheme for NOMA-based mobile edge computation networks underlaying UAV[J]. IEEE Systems Journal, 2021, 15(4): 5724–5733. doi: 10.1109/JSYST.2021.3076782.
|
[13] |
WANG Ningyuan, LI Feng, CHEN Dong, et al. NOMA-based energy-efficiency optimization for UAV enabled space-air-ground integrated relay networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 4129–4141. doi: 10.1109/TVT.2022.3151369.
|
[14] |
KATWE M, SINGH K, SHARMA P K, et al. Dynamic user clustering and optimal power allocation in UAV-assisted full-duplex hybrid NOMA system[J]. IEEE Transactions on Wireless Communications, 2022, 21(4): 2573–2590. doi: 10.1109/TWC.2021.3113640.
|
[15] |
GAN Xueqing, JIANG Yuke, WANG Yufan, et al. Sum rate maximization for UAV assisted NOMA backscatter communication system[C]. Proceedings of the 6th World Conference on Computing and Communication Technologies (WCCCT), Chengdu, China, 2023: 19–23. doi: 10.1109/WCCCT56755.2023.10052259.
|
[16] |
ASHRAF M I, LIU Chenfeng, BENNIS M, et al. Dynamic resource allocation for optimized latency and reliability in vehicular networks[J]. IEEE Access, 2018, 6: 63843–63858. doi: 10.1109/ACCESS.2018.2876548.
|
[17] |
KHOUEIRY B W and SOLEYMANI M R. An efficient NOMA V2X communication scheme in the Internet of vehicles[C]. Proceedings of the IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 2017: 1–7. doi: 10.1109/VTCSpring.2017.8108427.
|
[18] |
CHEN Yingyang, WANG Li, AI Yutong, et al. Performance analysis of NOMA-SM in vehicle-to-vehicle massive MIMO channels[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(12): 2653–2666. doi: 10.1109/JSAC.2017.2726006.
|
[19] |
ZHANG Di, LIU Yuanwei, DAI Linglong, et al. Performance analysis of FD-NOMA-based decentralized V2X systems[J]. IEEE Transactions on Communications, 2019, 67(7): 5024–5036. doi: 10.1109/TCOMM.2019.2904499.
|
[20] |
TANG S J W, NG K Y, KHOO B H, et al. Real-time lane detection and rear-end collision warning system on a mobile computing platform[C]. Proceedings of the IEEE 39th Annual Computer Software and Applications Conference, Taichung, China, 2015: 563–568. doi: 10.1109/COMPSAC.2015.171.
|
[21] |
ZHAN Wenhan, LUO Chunbo, WANG Jin, et al. Deep-reinforcement-learning-based offloading scheduling for vehicular edge computing[J]. IEEE Internet of Things Journal, 2020, 7(6): 5449–5465. doi: 10.1109/JIOT.2020.2978830.
|
[22] |
ZHONG Ruikang, LIU Xiao, LIU Yuanwei, et al. Multi-agent reinforcement learning in NOMA-aided UAV networks for cellular offloading[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 1498–1512. doi: 10.1109/TWC.2021.3104633.
|
[23] |
NGO H Q, LARSSON E G, and MARZETTA T L. Energy and spectral efficiency of very large multiuser MIMO systems[J]. IEEE Transactions on Communications, 2013, 61(4): 1436–1449. doi: 10.1109/TCOMM.2013.020413.110848.
|
[24] |
ZHU Hongbiao, WU Qiong, WU Xiaojun, et al. Decentralized power allocation for MIMO-NOMA vehicular edge computing based on deep reinforcement learning[J]. IEEE Internet of Things Journal, 2022, 9(14): 12770–12782. doi: 10.1109/JIOT.2021.3138434.
|
[25] |
LIU Yuan, XIONG Ke, NI Qiang, et al. UAV-assisted wireless powered cooperative mobile edge computing: Joint offloading, CPU control, and trajectory optimization[J]. IEEE Internet of Things Journal, 2020, 7(4): 2777–2790. doi: 10.1109/JIOT.2019.2958975.
|
[26] |
TSE D and VISWANATH P. Fundamentals of Wireless Communication[M]. Cambridge: Cambridge University Press, 2005.
|
[27] |
SCHULMAN J, MORITZ P, LEVINE S, et al. High-dimensional continuous control using generalized advantage estimation[J]. arXiv: 1506.02438, 2015. doi: 10.48550/arXiv.1506.02438.
|