Advanced Search
Volume 45 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
XIE Zhuang, ZHU Jiahua, XU Zhou, FAN Chongyi, JIN Tian, HUANG Xiaotao. Polyphase Waveform and Reflection Design Based on RIS-Aided Radar System[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3848-3859. doi: 10.11999/JEIT230767
Citation: XIE Zhuang, ZHU Jiahua, XU Zhou, FAN Chongyi, JIN Tian, HUANG Xiaotao. Polyphase Waveform and Reflection Design Based on RIS-Aided Radar System[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3848-3859. doi: 10.11999/JEIT230767

Polyphase Waveform and Reflection Design Based on RIS-Aided Radar System

doi: 10.11999/JEIT230767
Funds:  The National Natural Science Foundation of China (62101573), The Scientific Research Project of National University of Defense Technology (ZK20-35)
  • Received Date: 2023-07-27
  • Rev Recd Date: 2023-10-17
  • Available Online: 2023-10-19
  • Publish Date: 2023-11-28
  • This study addresses the joint design problem of radar transmit waveform, receive filter and Reconfigurable Intelligent Surface (RIS) reflecting coefficients with an aim to enhance the target detection performance of a RIS-aided radar system. With restrictions on the finite phases of the radar waveform and RIS reflecting coefficients, the performance enhancement problem is formulated as a nonconvex joint design, in which the system Signal-to-Interference-plus-Noise-Ratio (SINR) is taken as the optimization objective. A novel cyclic optimization algorithm is developed to tackle this. In each cycle, two subproblems with respect to waveform and RIS reflecting coefficients are involved and are resolved by leveraging the Minorization Maximization (MM) strategy. The simulation results highlight the effectiveness of the proposed algorithm for providing high-quality RIS reflecting coefficients, radar transmit waveform, and receive filter.
  • loading
  • [1]
    BLUNT S D and MOKOLE E L. Overview of radar waveform diversity[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(11): 2–42. doi: 10.1109/MAES.2016.160071
    [2]
    GURBUZ S Z, GRIFFITHS H D, CHARLISH A, et al. An overview of cognitive radar: Past, present, and future[J]. IEEE Aerospace and Electronic Systems Magazine, 2019, 34(12): 6–18. doi: 10.1109/MAES.2019.2953762
    [3]
    崔国龙, 余显祥, 杨婧, 等. 认知雷达波形优化设计方法综述[J]. 雷达学报, 2019, 8(5): 537–557. doi: 10.12000/JR19072

    CUI Guolong, YU Xianxiang, YANG Jing, et al. An overview of waveform optimization methods for cognitive radar[J]. Journal of Radars, 2019, 8(5): 537–557. doi: 10.12000/JR19072
    [4]
    WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107
    [5]
    ZHANG Shuowen and ZHANG Rui. Capacity characterization for intelligent reflecting surface aided MIMO communication[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1823–1838. doi: 10.1109/JSAC.2020.3000814
    [6]
    HAN Yu, TANG Wankai, JIN Shi, et al. Large intelligent surface-assisted wireless communication exploiting statistical CSI[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 8238–8242. doi: 10.1109/TVT.2019.2923997
    [7]
    DI RENZO M, ZAPPONE A, DEBBAH M, et al. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2450–2525. doi: 10.1109/JSAC.2020.3007211
    [8]
    ELMOSSALLAMY M A, ZHANG Hongliang, SONG Lingyang, et al. Reconfigurable intelligent surfaces for wireless communications: Principles, challenges, and opportunities[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(3): 990–1002. doi: 10.1109/TCCN.2020.2992604
    [9]
    LIU Yuanwei, LIU Xiao, MU Xidong, et al. Reconfigurable intelligent surfaces: Principles and opportunities[J]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 1546–1577. doi: 10.1109/COMST.2021.3077737
    [10]
    唐杰, 文红, 宋欢欢, 等. 基于智能反射表面辅助的MIMO无线通信密钥快速生成[J]. 电子与信息学报, 2022, 44(7): 2264–2272. doi: 10.11999/JEIT210442

    TANG Jie, WEN Hong, SONG Huanhuan, et al. MIMO fast wireless secret key generation based on intelligent reflecting surface[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2264–2272. doi: 10.11999/JEIT210442
    [11]
    徐勇军, 徐然, 周继华, 等. 面向窃听用户的RIS-MISO系统鲁棒资源分配算法[J]. 电子与信息学报, 2022, 44(7): 2253–2263. doi: 10.11999/JEIT211537

    XU Yongjun, XU Ran, ZHOU Jihua, et al. Robust resource allocation algorithm for RIS-assisted MISO systems with eavesdroppers[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2253–2263. doi: 10.11999/JEIT211537
    [12]
    WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025
    [13]
    WU Qingqing and ZHANG Rui. Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts[J]. IEEE Transactions on Communications, 2020, 68(3): 1838–1851. doi: 10.1109/TCOMM.2019.2958916
    [14]
    YAN Shucheng, CAI Shu, XIA Wenchao, et al. A reconfigurable intelligent surface aided dual-function radar and communication system[C]. 2022 2nd IEEE International Symposium on Joint Communications & Sensing (JC&S), Seefeld, Austria, 2022: 1–6. doi: 10.1109/JCS54387.2022.9743509.
    [15]
    HE Yinghui, CAI Yunlong, MAO Hao, et al. RIS-assisted communication radar coexistence: Joint beamforming design and analysis[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2131–2145. doi: 10.1109/JSAC.2022.3155507
    [16]
    LIU Rang, LI Ming, LIU Yang, et al. Joint transmit waveform and passive beamforming design for RIS-aided DFRC systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(5): 995–1010. doi: 10.1109/JSTSP.2022.3172788
    [17]
    ZHU Qi, LI Ming, LIU Rang, et al. Joint transceiver beamforming and reflecting design for active RIS-aided ISAC systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 9636–9640. doi: 10.1109/TVT.2023.3249752
    [18]
    SALEM A A, ISMAIL M H, and IBRAHIM A S. Active reconfigurable intelligent surface-assisted MISO integrated sensing and communication systems for secure operation[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 4919–4931. doi: 10.1109/TVT.2022.3227319
    [19]
    CHEN Zhen, YE Junjie, and HUANG Lei. A two-stage beamforming design for active RIS aided dual functional radar and communication[C]. 2023 IEEE Wireless Communications and Networking Conference (WCNC), Glasgow, UK, 2023: 1–6. doi: 10.1109/WCNC55385.2023.10118701.
    [20]
    AUBRY A, DE MAIO A, and ROSAMILIA M. Reconfigurable intelligent surfaces for N-LOS radar surveillance[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 10735–10749. doi: 10.1109/TVT.2021.3102315
    [21]
    LU Wei, DENG Bin, FANG Qiqing, et al. Intelligent reflecting surface-enhanced target detection in MIMO radar[J]. IEEE Sensors Letters, 2021, 5(2): 7000304. doi: 10.1109/LSENS.2021.3052753
    [22]
    LU Wei, LIN Qiang, SONG Ningzhe, et al. Target detection in intelligent reflecting surface aided distributed MIMO radar systems[J]. IEEE Sensors Letters, 2021, 5(3): 7000804. doi: 10.1109/LSENS.2021.3061534
    [23]
    BUZZI S, GROSSI E, LOPS M, et al. Radar target detection aided by reconfigurable intelligent surfaces[J]. IEEE Signal Processing Letters, 2021, 28: 1315–1319. doi: 10.1109/LSP.2021.3089085
    [24]
    BUZZI S, GROSSI E, LOPS M, et al. Foundations of MIMO radar detection aided by reconfigurable intelligent surfaces[J]. IEEE Transactions on Signal Processing, 2022, 70: 1749–1763. doi: 10.1109/TSP.2022.3157975
    [25]
    ZHANG Haobo, ZHANG Hongliang, DI Boya, et al. MetaRadar: Multi-target detection for reconfigurable intelligent surface aided radar systems[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 6994–7010. doi: 10.1109/TWC.2022.3153792
    [26]
    XIE Zhuang, XU Zhou, HAN Sudan, et al. Modulus constrained minimax radar code design against target interpulse fluctuation[J]. IEEE Transactions on Vehicular Technology, 2023, 72(10): 13671.
    [27]
    XIE Zhuang, XU Zhou, FAN Chongyi, et al. Robust radar waveform optimization under target interpulse fluctuation and practical constraints via sequential lagrange dual approximation[J]. IEEE Transactions on Aerospace and Electronic Systems, To be published.
    [28]
    TANG Bo, TUCK J, and STOICA P. Polyphase waveform design for MIMO radar space time adaptive processing[J]. IEEE Transactions on Signal Processing, 2020, 68: 2143–2154. doi: 10.1109/TSP.2020.2983833
    [29]
    YANG Jing, AUBRY A, DE MAIO A, et al. Multi-spectrally constrained transceiver design against signal-dependent interference[J]. IEEE Transactions on Signal Processing, 2022, 70: 1320–1332. doi: 10.1109/TSP.2022.3144953
    [30]
    BOYD S P and VANDENBERGHE L. Convex Optimization[M]. Cambridge, UK: Cambridge University Press, 2004.
    [31]
    AUBRY A, DEMAIO A, FARINA A, et al. Knowledge-aided (potentially cognitive) transmit signal and receive filter design in signal-dependent clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 93–117. doi: 10.1109/TAES.2013.6404093
    [32]
    YU Xianxiang, ALHUJAILI K, CUI Guolong, et al. MIMO radar waveform design in the presence of multiple targets and practical constraints[J]. IEEE Transactions on Signal Processing, 2020, 68: 1974–1989. doi: 10.1109/TSP.2020.2979602
    [33]
    WU Linlong, BABU P, and PALOMAR D P. Transmit waveform/receive filter design for MIMO radar with multiple waveform constraints[J]. IEEE Transactions on Signal Processing, 2018, 66(6): 1526–1540. doi: 10.1109/TSP.2017.2787115
    [34]
    SONG Junxiao, BABU P, and PALOMAR D P. Optimization methods for designing sequences with low autocorrelation sidelobes[J]. IEEE Transactions on Signal Processing, 2015, 63(15): 3998–4009. doi: 10.1109/TSP.2015.2425808
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (383) PDF downloads(120) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return