Citation: | YIN Lei, HOU Peng, DING Ning, LIN Zhongchao, ZHAO Xunwang, ZHANG Yu, JIAO Yongchang. Electromagnetic Algorithm for Efficiently Analyzing Large Scale Antenna Arrays with Radomes[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2549-2557. doi: 10.11999/JEIT230721 |
[1] |
MONEUM M A A, SHEN Z, VOLAKIS J L, et al. Hybrid PO-MoM analysis of large axi-symmetric radomes[J]. IEEE Transactions on Antennas and Propagation, 2001, 49(12): 1657–1666. doi: 10.1109/8.982444.
|
[2] |
AN Yuyuan and CHEN Ruishan. A fast hybrid method for EM analysis of electrically large metal space frame radomes[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1124–1127. doi: 10.1109/LAWP.2014.2327957.
|
[3] |
WANG Binbin, HE Mang, LIU Jinbo, et al. Fast and efficient analysis of radome-enclosed antennas in receiving mode by an iterative-based hybrid integral equation/modified surface integration method[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2436–2445. doi: 10.1109/TAP.2017.2676718.
|
[4] |
ZHAI Chang, ZHAO Xunwang, LIN Zhongchao, et al. Integrated analysis and optimization of the large airborne radome-enclosed antenna system[J]. ACES Journal, 2020, 35(10): 1192–1199. doi: 10.47037/2020.ACES.J.351012.
|
[5] |
YOU Jianwei, TAN Shurun, ZHOU Xiaoyang, et al. A new method to analyze broadband antenna-radome interactions in time-domain[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(1): 334–344. doi: 10.1109/TAP.2013.2290548.
|
[6] |
YANG Minglin, GAO Hongwei, and SHENG Xinqing. Parallel domain-decomposition-based algorithm of hybrid FE-BI-MLFMA method for 3-D scattering by large inhomogeneous objects[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(9): 4675–4684. doi: 10.1109/TAP.2013.2271232.
|
[7] |
YANG Zeng, YUAN Xiaowei, HUANG Xiaowei, et al. Resistive sheet boundary condition-based nonconformal domain decomposition FE-BI-MLFMA for electromagnetic scattering from inhomogeneous objects with honeycomb structures[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(10): 9483–9496. doi: 10.1109/TAP.2022.3177565.
|
[8] |
YANG Xiong, JIANG Ming, SHEN Liang, et al. A flexible FEM-BEM-DDM for EM scattering by multiscale anisotropic objects[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(12): 8562–8573. doi: 10.1109/TAP.2021.3091196.
|
[9] |
HE Weijia, YANG Zeng, HUANG Xiaowei, et al. Solving electromagnetic scattering problems with tens of billions of unknowns using GPU accelerated massively parallel MLFMA[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(7): 5672–5682. doi: 10.1109/TAP.2022.3161520.
|
[10] |
FOSTIER J and OLYSLAGER F. An asynchronous parallel MLFMA for scattering at multiple dielectric objects[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(8): 2346–2355. doi: 10.1109/TAP.2008.926787.
|
[11] |
HARRINGTON R F. Field Computation by Moment Methods[M]. Piscataway: IEEE Press, 1993: 52.
|
[12] |
COIFMAN R, ROKHLIN V, and WANDZURA S. The fast multipole method for the wave equation: A pedestrian prescription[J]. IEEE Antennas and Propagation Magazine, 1993, 35(3): 7–12. doi: 10.1109/74.250128.
|
[13] |
MAUTZ J R and HARRINGTON R F. Electromagnetic scattering from a homogeneous material body of revolution[J]. Archiv fuer Elektronik und Uebertragungstechnik, 1979, 33(2): 71–80.
|
[14] |
RAO S, WILTON D, and GLISSON A. Electromagnetic scattering by surfaces of arbitrary shape[J]. IEEE Transactions on Antennas and Propagation, 1982, 30(3): 409–418. doi: 10.1109/TAP.1982.1142818.
|
[15] |
YANG Minglin, DU Yulin, and SHENG Xinqing. Solving Electromagnetic Scattering Problems with Over 10 Billion Unknowns with the Parallel MLFMA[C]. Proceedings of 2019 Photonics & Electromagnetics Research Symposium, Xiamen, China, 2019: 355–360. doi: 10.1109/PIERS-Fall48861.2019.9021504.
|
[16] |
HE Weijia, HUANG Xiaowei, YANG Minglin, et al. Massively parallel multilevel fast multipole algorithm for extremely large-scale electromagnetic simulations: A review[J]. Progress In Electromagnetics Research, 2022, 173: 37–52. doi: 10.2528/PIER22011202.
|
[17] |
ZHAO Xunwang, TING S W, and ZHANG Yu. Parallelization of half-space MLFMA using adaptive direction partitioning strategy[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1203–1206. doi: 10.1109/LAWP.2014.2331699.
|
[18] |
MUMPS[EB/OL].https://mumps-solver.org, 2023.
|
[19] |
LIN Zhongchao, ZHAO Xunwang, ZHANG Yu, et al. Higher order method of moments analysis of metallic waveguides loaded with composite metallic and dielectric structures[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(9): 4958–4963. doi: 10.1109/TAP.2018.2845539.
|
[20] |
ZUO Sheng, LIN Zhongchao, DOÑORO D G, et al. A massively parallel preconditioned FEM–BEM method for accurate analysis of complex electromagnetic field problems[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(5): 1194–1198. doi: 10.1109/LAWP.2023.3236373.
|