Advanced Search
Volume 46 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
YIN Lei, HOU Peng, DING Ning, LIN Zhongchao, ZHAO Xunwang, ZHANG Yu, JIAO Yongchang. Electromagnetic Algorithm for Efficiently Analyzing Large Scale Antenna Arrays with Radomes[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2549-2557. doi: 10.11999/JEIT230721
Citation: YIN Lei, HOU Peng, DING Ning, LIN Zhongchao, ZHAO Xunwang, ZHANG Yu, JIAO Yongchang. Electromagnetic Algorithm for Efficiently Analyzing Large Scale Antenna Arrays with Radomes[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2549-2557. doi: 10.11999/JEIT230721

Electromagnetic Algorithm for Efficiently Analyzing Large Scale Antenna Arrays with Radomes

doi: 10.11999/JEIT230721
Funds:  Key Research and Development Program of Shaanxi (2022ZDLGY02-02, 2023-ZDLGY-09, 2021GXLH-02); The Fundamental Research Funds for the Central Universities (QTZX23018)
  • Received Date: 2023-07-18
  • Rev Recd Date: 2023-10-11
  • Available Online: 2023-10-17
  • Publish Date: 2024-06-30
  • For the analysis problem of large antenna arrays with radomes, based on the equivalence principle and mode matching theory, the wave port model of Multilevel Fast Multipole Algorithm (MLFMA) is established, and the accurate electromagnetic modeling of antenna excitation source and matching load is realized. Moreover, a parallel strategy of MLFMA for calculating metal-dielectric antenna models is proposed. By establishing multiple octree structures, the communication in processes during the calculation is reduced, and the accurate and efficient analysis of large antenna-array-and-radome-integration system is realized. A comparison of the antenna pattern and S parameters calculated by the proposed algorithm, the higher order method of moments and the finite element-boundary integral is given, validating accuracy and efficiency of the proposed method.
  • loading
  • [1]
    MONEUM M A A, SHEN Z, VOLAKIS J L, et al. Hybrid PO-MoM analysis of large axi-symmetric radomes[J]. IEEE Transactions on Antennas and Propagation, 2001, 49(12): 1657–1666. doi: 10.1109/8.982444.
    [2]
    AN Yuyuan and CHEN Ruishan. A fast hybrid method for EM analysis of electrically large metal space frame radomes[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1124–1127. doi: 10.1109/LAWP.2014.2327957.
    [3]
    WANG Binbin, HE Mang, LIU Jinbo, et al. Fast and efficient analysis of radome-enclosed antennas in receiving mode by an iterative-based hybrid integral equation/modified surface integration method[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2436–2445. doi: 10.1109/TAP.2017.2676718.
    [4]
    ZHAI Chang, ZHAO Xunwang, LIN Zhongchao, et al. Integrated analysis and optimization of the large airborne radome-enclosed antenna system[J]. ACES Journal, 2020, 35(10): 1192–1199. doi: 10.47037/2020.ACES.J.351012.
    [5]
    YOU Jianwei, TAN Shurun, ZHOU Xiaoyang, et al. A new method to analyze broadband antenna-radome interactions in time-domain[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(1): 334–344. doi: 10.1109/TAP.2013.2290548.
    [6]
    YANG Minglin, GAO Hongwei, and SHENG Xinqing. Parallel domain-decomposition-based algorithm of hybrid FE-BI-MLFMA method for 3-D scattering by large inhomogeneous objects[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(9): 4675–4684. doi: 10.1109/TAP.2013.2271232.
    [7]
    YANG Zeng, YUAN Xiaowei, HUANG Xiaowei, et al. Resistive sheet boundary condition-based nonconformal domain decomposition FE-BI-MLFMA for electromagnetic scattering from inhomogeneous objects with honeycomb structures[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(10): 9483–9496. doi: 10.1109/TAP.2022.3177565.
    [8]
    YANG Xiong, JIANG Ming, SHEN Liang, et al. A flexible FEM-BEM-DDM for EM scattering by multiscale anisotropic objects[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(12): 8562–8573. doi: 10.1109/TAP.2021.3091196.
    [9]
    HE Weijia, YANG Zeng, HUANG Xiaowei, et al. Solving electromagnetic scattering problems with tens of billions of unknowns using GPU accelerated massively parallel MLFMA[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(7): 5672–5682. doi: 10.1109/TAP.2022.3161520.
    [10]
    FOSTIER J and OLYSLAGER F. An asynchronous parallel MLFMA for scattering at multiple dielectric objects[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(8): 2346–2355. doi: 10.1109/TAP.2008.926787.
    [11]
    HARRINGTON R F. Field Computation by Moment Methods[M]. Piscataway: IEEE Press, 1993: 52.
    [12]
    COIFMAN R, ROKHLIN V, and WANDZURA S. The fast multipole method for the wave equation: A pedestrian prescription[J]. IEEE Antennas and Propagation Magazine, 1993, 35(3): 7–12. doi: 10.1109/74.250128.
    [13]
    MAUTZ J R and HARRINGTON R F. Electromagnetic scattering from a homogeneous material body of revolution[J]. Archiv fuer Elektronik und Uebertragungstechnik, 1979, 33(2): 71–80.
    [14]
    RAO S, WILTON D, and GLISSON A. Electromagnetic scattering by surfaces of arbitrary shape[J]. IEEE Transactions on Antennas and Propagation, 1982, 30(3): 409–418. doi: 10.1109/TAP.1982.1142818.
    [15]
    YANG Minglin, DU Yulin, and SHENG Xinqing. Solving Electromagnetic Scattering Problems with Over 10 Billion Unknowns with the Parallel MLFMA[C]. Proceedings of 2019 Photonics & Electromagnetics Research Symposium, Xiamen, China, 2019: 355–360. doi: 10.1109/PIERS-Fall48861.2019.9021504.
    [16]
    HE Weijia, HUANG Xiaowei, YANG Minglin, et al. Massively parallel multilevel fast multipole algorithm for extremely large-scale electromagnetic simulations: A review[J]. Progress In Electromagnetics Research, 2022, 173: 37–52. doi: 10.2528/PIER22011202.
    [17]
    ZHAO Xunwang, TING S W, and ZHANG Yu. Parallelization of half-space MLFMA using adaptive direction partitioning strategy[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1203–1206. doi: 10.1109/LAWP.2014.2331699.
    [18]
    MUMPS[EB/OL].https://mumps-solver.org, 2023.
    [19]
    LIN Zhongchao, ZHAO Xunwang, ZHANG Yu, et al. Higher order method of moments analysis of metallic waveguides loaded with composite metallic and dielectric structures[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(9): 4958–4963. doi: 10.1109/TAP.2018.2845539.
    [20]
    ZUO Sheng, LIN Zhongchao, DOÑORO D G, et al. A massively parallel preconditioned FEM–BEM method for accurate analysis of complex electromagnetic field problems[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(5): 1194–1198. doi: 10.1109/LAWP.2023.3236373.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (322) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return