Citation: | XIA Chenxing, CHEN Xinyu, SUN Yanguang, GE Bin, FANG Xianjin, GAO Xiuju, ZHANG Yan. Integrating Multiple Context and Hybrid Interaction for Salient Object Detection[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2918-2931. doi: 10.11999/JEIT230719 |
[1] |
LIU Mingyuan, SCHONFELD D, and TANG Wei. Exploit visual dependency relations for semantic segmentation[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 9726–9735. doi: 10.1109/CVPR46437.2021.00960.
|
[2] |
ZHANG Xi and WU Xiaolin. Attention-guided image compression by deep reconstruction of compressive sensed saliency skeleton[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 13354–13364. doi: 10.1109/cvpr46437.2021.01315.
|
[3] |
LEE S, SEONG H, LEE S, et al. Correlation verification for image retrieval[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 5374–5384. doi: 10.1109/CVPR52688.2022.00530.
|
[4] |
ZHU Junyan, WU Jianjun, XU Yan, et al. Unsupervised object class discovery via saliency-guided multiple class learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(4): 862–875. doi: 10.1109/tpami.2014.2353617.
|
[5] |
GUPTA D K, ARYA D, and GAVVES E. Rotation equivariant Siamese networks for tracking[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 12362–12371. doi: 10.1109/cvpr46437.2021.01218.
|
[6] |
PANG Youwei, ZHAO Xiaoqi, XIANG Tianzhu, et al. Zoom in and out: A mixed-scale triplet network for camouflaged object detection[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 2160–2170. doi: 10.1109/cvpr52688.2022.00220.
|
[7] |
PENG Houwen, LI Bing, LING Haibin, et al. Salient object detection via structured matrix decomposition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 818–832. doi: 10.1109/TPAMI.2016.2562626.
|
[8] |
SHEN Xiaohui and WU Ying. A unified approach to salient object detection via low rank matrix recovery[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 853–860. doi: 10.1109/cvpr.2012.6247758.
|
[9] |
唐红梅, 白梦月, 韩力英, 等. 基于低秩背景约束与多线索传播的图像显著性检测[J]. 电子与信息学报, 2021, 43(5): 1432–1440. doi: 10.11999/JEIT200193.
TANG Hongmei, BAI Mengyue, HAN Liying, et al. Image saliency detection based on background constraint of low rank and multi-cue propagation[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1432–1440. doi: 10.11999/JEIT200193.
|
[10] |
MARGOLIN R, TAL A, and ZELNIK-MANOR L. What makes a patch distinct?[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 1139–1146. doi: 10.1109/cvpr.2013.151.
|
[11] |
TONG Na, LU Huchuan, RUAN Xiang, et al. Salient object detection via bootstrap learning[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1884–1892. doi: 10.1109/cvpr.2015.7298798.
|
[12] |
JIANG Zhuolin and DAVIS L S. Submodular salient region detection[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 2043–2050. doi: 10.1109/cvpr.2013.266.
|
[13] |
LI Guanbin and YU Yizhou. Visual saliency based on multiscale deep features[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 5455–5463. doi: 10.1109/cvpr.2015.7299184.
|
[14] |
LIU Nian and HAN Junwei. DHSnet: Deep hierarchical saliency network for salient object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 678–686. doi: 10.1109/cvpr.2016.80.
|
[15] |
SHELHAMER E, LONG J, and DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640–651. doi: 10.1109/TPAMI.2016.2572683.
|
[16] |
ZHAO Ting and WU Xiangqian. Pyramid feature attention network for saliency detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 3085–3094. doi: 10.1109/cvpr.2019.00320.
|
[17] |
SIRIS A, JIAO Jianbo, TAM G K L, et al. Scene context-aware salient object detection[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 4156–4166. doi: 10.1109/iccv48922.2021.00412.
|
[18] |
CHEN Zuyao, XU Qianqian, CONG Runmin, et al. Global context-aware progressive aggregation network for salient object detection[C]. The 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 10599–10606. doi: 10.1609/aaai.v34i07.6633.
|
[19] |
WU Zhenyu, LI Shuai, CHEN Chenglizhao, et al. Salient object detection via dynamic scale routing[J]. IEEE Transactions on Image Processing, 2022, 31: 6649–6663. doi: 10.1109/tip.2022.3214332.
|
[20] |
ZHANG Pingping, WANG Dong, LU Huchuan, et al. Amulet: Aggregating multi-level convolutional features for salient object detection[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 202–211. doi: 10.1109/iccv.2017.31.
|
[21] |
HOU Qibin, CHENG Mingming, HU Xiaowei, et al. Deeply supervised salient object detection with short connections[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(4): 815–828. doi: 10.1109/TPAMI.2018.2815688.
|
[22] |
LI Junxia, PAN Zefeng, LIU Qingshan, et al. Stacked U-shape network with channel-wise attention for salient object detection[J]. IEEE Transactions on Multimedia, 2021, 23: 1397–1409. doi: 10.1109/TMM.2020.2997192.
|
[23] |
ZHANG Lu, DAI Ju, LU Huchuan, et al. A bi-directional message passing model for salient object detection[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1741–1750. doi: 10.1109/cvpr.2018.00187.
|
[24] |
雷大江, 杜加浩, 张莉萍, 等. 联合多流融合和多尺度学习的卷积神经网络遥感图像融合方法[J]. 电子与信息学报, 2022, 44(1): 237–244. doi: 10.11999/JEIT200792.
LEI Dajiang, DU Jiahao, ZHANG Liping, et al. Multi-stream architecture and multi-scale convolutional neural network for remote sensing image fusion[J]. Journal of Electronics & Information Technology, 2022, 44(1): 237–244. doi: 10.11999/JEIT200792.
|
[25] |
李珣, 李林鹏, LAZOVIK A, 等. 基于改进双流卷积递归神经网络的RGB-D物体识别方法[J]. 光电工程, 2021, 48(2): 200069. doi: 10.12086/oee.2021.200069.
LI Xun, LI Linpeng, LAZOVIK A, et al. RGB-D object recognition algorithm based on improved double stream convolution recursive neural network[J]. Opto-Electronic Engineering, 2021, 48(2): 200069. doi: 10.12086/oee.2021.200069.
|
[26] |
邓箴, 王一斌, 刘立波. 视觉注意机制的注意残差稠密神经网络弱光照图像增强[J]. 液晶与显示, 2021, 36(11): 1463–1473. doi: 10.37188/CJLCD.2021-0098.
DENG Zhen, WANG Yibin, and LIU Libo. Attentive residual dense network of visual attention mechanism for weakly illuminated image enhancement[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(11): 1463–1473. doi: 10.37188/CJLCD.2021-0098.
|
[27] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/cvpr.2016.90.
|
[28] |
LIU Jiangjiang, HOU Qibin, CHENG Mingming, et al. A simple pooling-based design for real-time salient object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 3917–3926. doi: 10.1109/cvpr.2019.00404.
|
[29] |
卢珊妹, 郭强, 王任, 等. 基于多特征注意力循环网络的显著性检测[J]. 计算机辅助设计与图形学学报, 2020, 32(12): 1926–1937. doi: 10.3724/sp.j.1089.2020.18240.
LU Shanmei, GUO Qiang, WANG Ren, et al. Salient object detection using multi-scale features with attention recurrent mechanism[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(12): 1926–1937. doi: 10.3724/sp.j.1089.2020.18240.
|
[30] |
HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4700–4708. doi: 10.1109/cvpr.2017.243.
|
[31] |
ZHANG Xiangyu, ZHOU Xinyu, LIN Mengxiao, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6848–6856. doi: 10.1109/cvpr.2018.00716.
|
[32] |
ZHANG Pingping, WANG Dong, LU Huchuan, et al. Learning uncertain convolutional features for accurate saliency detection[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 212–221. doi: 10.1109/iccv.2017.32.
|
[33] |
WANG Tiantian, ZHANG Lihe, WANG Shuo, et al. Detect globally, refine locally: A novel approach to saliency detection[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3127–3135. doi: 10.1109/cvpr.2018.00330.
|
[34] |
FENG Mengyang, LU Huchuan, and DING Errui. Attentive feedback network for boundary-aware salient object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1623–1632. doi: 10.1109/cvpr.2019.00172.
|
[35] |
WU Zhe, SU Li, and HUANG Qingming. Cascaded partial decoder for fast and accurate salient object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 3907–3916. doi: 10.1109/cvpr.2019.00403.
|
[36] |
FENG Mengyang, LU Huchuan, and YU Yizhou. Residual learning for salient object detection[J]. IEEE Transactions on Image Processing, 2020, 29: 4696–4708. doi: 10.1109/tip.2020.2975919.
|
[37] |
ZHAO Xiaoqi, PANG Youwei, ZHANG Lihe, et al. Suppress and balance: A simple gated network for salient object detection[C]. The 16th European Conference on Computer Vision, Glasgow, United Kingdom, 2020: 35–51. doi: 10.1007/978-3-030-58536-5_3.
|
[38] |
ZHOU Huajun, XIE Xiaohua, LAI Jianhuang, et al. Interactive two-stream decoder for accurate and fast saliency detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 9141–9150. doi: 10.1109/cvpr42600.2020.00916.
|
[39] |
PANG Youwei, ZHAO Xiaoqi, ZHANG Lihe, et al. Multi-scale interactive network for salient object detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 9413–9422. doi: 10.1109/cvpr42600.2020.00943.
|
[40] |
REN Qinghua, LU Shijian, ZHANG Jinxia, et al. Salient object detection by fusing local and global contexts[J]. IEEE Transactions on Multimedia, 2021, 23: 1442–1453. doi: 10.1109/tmm.2020.2997178.
|
[41] |
WANG Liansheng, CHEN Rongzhen, ZHU Lei, et al. Deep sub-region network for salient object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(2): 728–741. doi: 10.1109/tcsvt.2020.2988768.
|
[42] |
LIU Nian, ZHANG Ni, WAN Kaiyuan, et al. Visual saliency transformer[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 4722–4732. doi: 10.1109/iccv48922.2021.00468.
|
[43] |
LIU Yun, CHENG Mingming, ZHANG Xinyu, et al. DNA: Deeply supervised nonlinear aggregation for salient object detection[J]. IEEE Transactions on Cybernetics, 2022, 52(7): 6131–6142. doi: 10.1109/tcyb.2021.3051350.
|
[44] |
MEI Haiyang, LIU Yuanyuan, WEI Ziqi, et al. Exploring dense context for salient object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(3): 1378–1389. doi: 10.1109/tcsvt.2021.3069848.
|
[45] |
FANG Chaowei, TIAN Haibin, ZHANG Dingwen, et al. Densely nested top-down flows for salient object detection[J]. Science China Information Sciences, 2022, 65(8): 182103. doi: 10.1007/s11432-021-3384-y.
|
[46] |
ZHUGE Mingchen, FAN Dengping, LIU Nian, et al. Salient object detection via integrity learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3738–3752. doi: 10.1109/tpami.2022.3179526.
|
[47] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2117–2125. doi: 10.1109/cvpr.2017.106.
|
[48] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834–848. doi: 10.1109/tpami.2017.2699184.
|
[49] |
LIU Songtao, HUANG Di, and WANG Yunhong. Receptive field block net for accurate and fast object detection[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 385–400. doi: 10.1007/978-3-030-01252-6_24.
|