Citation: | MIN Minghui, YANG Shuang, XU Junhuai, LI Xin, LI Shiyin, XIAO Liang, PENG Guojun. Intelligent Semantic Location Privacy Protection Method for Location Based Services in Three-Dimensional Spaces[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2627-2637. doi: 10.11999/JEIT230708 |
[1] |
张鸿刚. 面向多情景的位置服务隐私保护算法研究与应用[D]. [硕士论文], 南京邮电大学, 2022.
ZHANG Honggang. Research and application of privacy-preserving algorithms for location services in multiple scenarios[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2022.
|
[2] |
XU Chuan, DING Yingyi, CHEN Chao, et al. Personalized location privacy protection for location-based services in vehicular networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(1): 1163–1177. doi: 10.1109/TITS.2022.3182019.
|
[3] |
YANG Zhigang, WANG Ruyan, WU Dapeng, et al. Local trajectory privacy protection in 5G enabled industrial intelligent logistics[J]. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2868–2876. doi: 10.1109/TII.2021.3116529.
|
[4] |
BOSTANIPOUR B and THEODORAKOPOULOS G. Joint obfuscation of location and its semantic information for privacy protection[J]. Computers & Security, 2021, 107: 102310. doi: 10.1016/j.cose.2021.102310.
|
[5] |
ZHENG Zhirun, LI Zhetao, JIANG Hongbo, et al. Semantic-aware privacy-preserving online location trajectory data sharing[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 2256–2271. doi: 10.1109/TIFS.2022.3181855.
|
[6] |
NIU Ben, LI Qinghua, WANG Hanyi, et al. A framework for personalized location privacy[J]. IEEE Transactions on Mobile Computing, 2022, 21(9): 3071–3083. doi: 10.1109/TMC.2021.3055865.
|
[7] |
REN Weilong, GHAZINOUR K, and LIAN Xiang. kt-safety: Graph release via k -anonymity and t-closeness[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(9): 9102–9113. doi: 10.1109/TKDE.2022.3221333.
|
[8] |
HOU Lei, YAO Nianmin, LU Zhimao, et al. Tracking based mix-zone location privacy evaluation in VANET[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 10957–10969. doi: 10.1109/TVT.2021.3109065.
|
[9] |
MOQURRAB S A, ANJUM A, TARIQ N, et al. Instant_Anonymity: A lightweight semantic privacy guarantee for 5G-enabled IIoT[J]. IEEE Transactions on Industrial Informatics, 2023, 19(1): 951–959. doi: 10.1109/TII.2022.3179536.
|
[10] |
PERALTA-PETERSON M and KOTEVSKA O. Effectiveness of privacy techniques in smart metering systems[C]. 2021 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, USA, 2021: 675–678. doi: 10.1109/CSCI54926.2021.00177.
|
[11] |
ZHU Yujia and ZHAI Lidong. Location privacy in buildings: A 3-dimensional k-anonymity model[C]. The 10th International Conference on Mobile Ad-hoc and Sensor Networks, Maui, USA, 2015: 195–200. doi: 10.1109/MSN.2014.33.
|
[12] |
KUMAR R and DAWRA S. Simulation of 3D privacy preservation and location monitoring approach[J]. International Research Journal of Engineering and Technology (IRJET), 2016, 3(5): 1099–1103.
|
[13] |
DWORK C. Differential privacy: A survey of results[C]. The 5th International Conference on Theory and Applications of Models of Computation, Xi’an, China, 2008: 1–19. doi: 10.1007/978-3-540-79228-4_1.
|
[14] |
ZHAO Ying and CHEN Jinjun. A survey on differential privacy for unstructured data content[J]. ACM Computing Surveys, 2022, 54(10s): 207. doi: 10.1145/3490237.
|
[15] |
ANDRÉS M E, BORDENABE N E, CHATZIKOKOLAKIS K, et al. Geo-indistinguishability: Differential privacy for location-based systems[C]. The 2013 ACM SIGSAC Conference on Computer & Communications Security (CCS), Berlin, Germany, 2013: 901–914. doi: 10.1145/2508859.2516735.
|
[16] |
ZHANG Pengfei, CHENG Xiang, SU Sen, et al. Task allocation under geo-indistinguishability via group-based noise addition[J]. IEEE Transactions on Big Data, 2023, 9(3): 860–877. doi: 10.1109/TBDATA.2022.3215467.
|
[17] |
MIN Minghui, XIAO Liang, DING Jiahao, et al. 3D geo-indistinguishability for indoor location-based services[J]. IEEE Transactions on Wireless Communications, 2022, 21(7): 4682–4694. doi: 10.1109/TWC.2021.3132464.
|
[18] |
ZHANG Wenjing, JIANG Bo, LI Ming, et al. Privacy-preserving aggregate mobility data release: An information-theoretic deep reinforcement learning approach[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 849–864. doi: 10.1109/TIFS.2022.3152361.
|
[19] |
LIU Bo, ZHOU Wanlei, ZHU Tianqing, et al. Location privacy and its applications: A systematic study[J]. IEEE Access, 2018, 6: 17606–17624. doi: 10.1109/ACCESS.2018.2822260.
|
[20] |
MIN Minghui, WANG Weihang, XIAO Liang, et al. Reinforcement learning-based sensitive semantic location privacy protection for VANETs[J]. China Communications, 2021, 18(6): 244–260. doi: 10.23919/JCC.2021.06.019.
|
[21] |
VEGA F and YU Wen. Smartphone based structural health monitoring using deep neural networks[J]. Sensors and Actuators A:Physical, 2022, 346: 113820. doi: 10.1016/j.sna.2022.113820.
|
[22] |
SHANKAR N, BHAT G S, and PANAHI I M S. Real-time single-channel deep neural network-based speech enhancement on edge devices[C]. The Interspeech 2020, 21st Annual Conference of the International Speech Communication Association, Shanghai, China, 2020: 3281–3285. doi: 10.21437/Interspeech.2020-1901.
|
[23] |
MIN Minghui, XIAO Liang, XIE Caixia, et al. Defense against advanced persistent threats in dynamic cloud storage: A colonel blotto game approach[J]. IEEE Internet of Things Journal, 2018, 5(6): 4250–4261. doi: 10.1109/JIOT.2018.2844878.
|
[24] |
SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[J]. arXiv preprint arXiv: 1707.06347, 2017. doi: 10.48550/arXiv.1707.06347.
|
[25] |
FERNANDES N, DRAS M, and MCIVER A. Generalised differential privacy for text document processing[C]. The 8th International Conference on Principles of Security and Trust, Prague, Czech Republic, 2019: 123–148. doi: 10.1007/978-3-030-17138-4_6.
|
[26] |
FATHALIZADEH A, MOGHTADAIEE V, and ALISHAHI M. Indoor geo-indistinguishability: Adopting differential privacy for indoor location data protection[J]. IEEE Transactions on Emerging Topics in Computing, 2023: 1–13. doi: 10.1109/TETC.2023.3242166.
|
[27] |
李玉柏, 孙迅. 基于迁移学习提高WiFi室内定位中信道状态信息指纹库的鲁棒性[J]. 电子与信息学报, 2023, 45(10): 3657–3666. doi: 10.11999/JEIT221160.
LI Yubai and SUN Xun. A highly robust indoor location algorithm using WiFi channel state information based on transfer learning reinforcement[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3657–3666. doi: 10.11999/JEIT221160.
|
[28] |
GÖTZ M, NATH S, and GEHRKE J. MaskIt: Privately releasing user context streams for personalized mobile applications[C]. The 2012 ACM SIGMOD International Conference on Management of Data, Scottsdale, USA, 2012: 289–300. doi: 10.1145/2213836.2213870.
|
[29] |
CHENG Hao, XIA Yili, HUANG Yongming, et al. Improper Gaussian signaling for downlink NOMA systems with imperfect successive interference cancellation[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7753–7763. doi: 10.1109/TWC.2022.3161379.
|
[30] |
KUMAR H, KOPPEL A, and RIBEIRO A. On the sample complexity of actor-critic method for reinforcement learning with function approximation[J]. Machine Learning, 2023, 112(7): 2433–2467. doi: 10.1007/s10994-023-06303-2.
|
[31] |
YANG Helin, XIONG Zehui, ZHAO Jun, et al. Intelligent reflecting surface assisted anti-jamming communications: A fast reinforcement learning approach[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1963–1974. doi: 10.1109/TWC.2020.3037767.
|
[32] |
XIAO Liang, HONG Siyuan, XU Shiyu, et al. IRS-aided energy-efficient secure WBAN transmission based on deep reinforcement learning[J]. IEEE Transactions On Communications, 2022, 70(6): 4162–4174. doi: 10.1109/TCOMM.2022.3169813.
|
[33] |
XIONG Jinbo, MA Rong, CHEN Lei, et al. A personalized privacy protection framework for mobile crowdsensing in IIoT[J]. IEEE Transactions on Industrial Informatics, 2020, 16(6): 4231–4241. doi: 10.1109/TII.2019.2948068.
|